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Figure 6.8: Electrical circuit model of the cell membrane.

Normally, cells are net negative inside the cell which results in a non-zero resting mem-
brane potential. The membrane potential of most cells is kept relatively stable. Nerve
cells, skeletal, and cardiac muscle cells, however, are specialized to use changes in
membrane potential for fast communication, primarily with other cells of their type.
Within a millisecond, their membrane potential changes from positive to negative and
back. This feature is referred to as action potential.

6.3.4 Action potential

The action potential is a self-regenerating pulse-like wave of electro-chemical activ-
ity that allows some cell types to rapidly carry signals over long distances. A typical
action potential is initiated by a sudden change in the transmembrane potential. As
the membrane potential is depolarized, both sodium and potassium channels begin to
open generating an inward sodium current balanced by an outward potassium current.
For only small perturbations, the potassium current wins and the membrane potential
returns to its resting state. For sufficiently large perturbations of approximately 20 mV,
however, the sodium current wins producing a positive feed back. The cell produces
an action potential, we say the cell fires. One very important feature of the action po-
tential is that its amplitude is independent of the degree of stimulation. Larger stimuli
do not generate larger action potentials. This characteristic property of action poten-
tials is referred to as all or none response, either the fires or it does not.
The initiation and propagation of electrical signals by the controlled opening and clos-
ing of ion channels is one of the most important cellular functions. Its first quantitative
model was proposed half a century ago and awarded the Nobel Prize in 1963 [18].
Although originally developed for neurons, this theory was soon modified and gen-
eralized to explain a wide variety of excitable cells. To gain a better understanding of
these models, let’s take a look at equation (6.3.2) which we can rephrase as follows.
1 .
¢ = — lon with Iion = INa + IK + ICI + ICa2+. (633)
m

Here ¢ = d¢ / dt is the change in the transmembrane potential, Cy, is the transmem-
brane capacitance, and I, is the total ionic current. This current results from the flux
of sodium In,, potassium Ik, chloride I¢j, and calcium I+ ions across the cell mem-
brane. If we measured the transmembrane potential of different cells types found in
the heart and plotted it over time, it would look somewhat like the illustraton in figure
6.9. Apparently, different cell types seem to have different action potentials.
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Figure 6.9: Electrophysiology of the heart: Characteristic action potentials and activation delay for vari-
ous different cell types in the heart, adopted from [15].

So the key question in describing the curves in figure 6.9 with equation (6.3.3) is, what
is the total ionic flux [, that drives the evolution of the transmembrane potential ¢?
Two categories of models have been proposed to describe different action potentials:
(i) ionic models and (ii) phenomenological models. Both are, of course, models and
just a simplification of the reality. While ionic models represent the flux of all ions,
the opening and closing of all channels, and the gating of ion channels in a very accu-
rate way [4,25,32], phenomenological models actually only try to reproduce the action
potential curve in a sufficiently accurate, but less expensive way [12,22].

The FitzHugh-Nagumo model

Probably the most prominent phenomenological model is the FitzHugh-Nagumo model
[13,31]. It is based on an extremely elegant two-parameter formulation that allows the
rigorous analysis of the underlying action potentials with well-established mathemat-
ical tools. Most importantly, it allows for a graphic representation in the phase plane.
Let’s look how the FitzHugh-Nagumo model can be derived. We start with a linear
second order equation to describe the oscillations ¢.

P+kp+¢=0 (6.3.4)

In this equation, we replace the constant damping coefficient k with a quadratic term
in terms of the potential k = c [¢?> — 1] to obtain the following non-linear equation.

$+clp*—1]¢+¢=0 (6.3.5)
With the help of Liénard’s transformation
r=—1¢-1¢>+¢ F=—1¢—[p*—1]¢ (6.3.6)

this second order equation can be transformed into a system of two first order equa-
tions. Its first equation follows from equation (6.3.6);, its second equation follows from
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equation (6.3.5) multiplied with —% in combination with equation (6.3.6),.

p=cl—3¢°+¢—r] r=1¢ (6.3.7)

Its fast variable, the transmembrane potential ¢, has a cubic non-linearity allowing for
regenerative self-excitation through a fast positive feedback. The slow variable, the
recovery variable 7, has a linear dynamics providing slow negative feedback. Keep
in mind that although r is something like a phenomenological representation of the
influence of all ionic fluxes, it has no real physically measurable interpretation. Last,
we add a possible external stimulus I to the first equation and two additional terms a
and b r to the second equation to obtain the classical FitzHugh-Nagumo model.
p=cl-3¢°+¢—r+I] F=1lp—br—a] (6.3.8)

c

Nagumo et al. [31] contributed essentially to their understanding by building the cor-
rensponding circuit to model the cell through a capacitor C for the membrane capaci-
tance, a non-linear current-voltage device for the fast current and a resistor, an inductor
and a battery in series for the recovery current, see figure 6.10, right.

recovery variable r

.5 1 1.5 2

Figure 6.10: Phase portrait of classical FitzHugh-Nagumo model with 2=0.7, b=0.8, ¢=3, left. Trajec-
tories for distinct initial values of potential ¢ and recovery variable r converge to steady state. Dashed
lines denote nuliclines with r = —1 ¢+ ¢ for ¢ = 0 and r = [¢ —a]/b for # = 0. Circuit diagram of
corresponding tunnel-diode nerve model, right.

Being restricted to only two degrees of freedom, the FitzHugh-Nagumo model can be
analyzed and interpreted in the two-dimensional phase space as illustrated in Figure
6.10, left. The dotted lines represent the two nullclines for r = —%473 +¢forp =0
and r = [¢ — a] /b for ¥ = 0, respectively. The nullclines are assumed to have a sin-
gle intersection point which represents the steady state of equilibrium at which both
43 = 0 and 7 = 0. For low external stimuli I, this equilibrium point is stable, as shown
in figure 6.10. It is located to the left of the local minimum of the cubic nullcline, and
all trajectories ultimately run into this stable equilibrium point. An increase of the ex-
ternal stimulus I shifts the cubic nullcline upwards. This causes the equilibrium point
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to move to the right. For sufficiently large stimuli, the steady state is located on the
unstable middle branch of the cubic nullcline, and the model exhibits periodic activity
referred to as tonic spiking.

The four phases of excitation

Nerve cells, skeletal muscle cells, and cardiac muscle cells are said to be excitable: A
sufficiently large perturbation from the steady state sends the state variables on a tra-
jectory that initially runs away from equilibrium before returning to the steady state.
This excitation is characterized through four phases as illustrated in figure 6.11.
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Figure 6.11: Four phases of the action potential: Regenerative phase, active phase, absolutely refractory
phase, and relatively refractory phase. Simulations are based on the classical FitzHugh-Nagumo model
Dashed lines in the phase portrait illustrate the nuliclines, the dot at their intersection corresponds to the
resting state, left. In the physiological state diagram, solid lines indicate the temporal evolution of the
membrane potential ¢ and dashed lines correspond to the recovery variable r, right.

Regenerative phase Excitation begins with the rapid depolarization of the cell char-
acterized through a fast upstroke of the membrane potential ¢. The depolarization
opens both sodium and potassium channels initiating an outward potassium current
and an inward sodium current. For small enough stimuli, the outward potassium cur-
rent overwhelms the inward sodium current and the cell returns to its resting state. For
sufficiently large stimuli, however, a positive feedback is generated. More and more
sodium channels open and the membrane potential is rapidly increased.

Active phase The active phase is characterized through a high and almost constant
membrane potential ¢ which initiates a slow increase of the recovery variable r. Sodium
permeability is maximized but decreases as more and more sodium channels tend to
close again. Also, potassium channels now begin to open. This marks the end of the
active phase.

Absolutely refractory phase During the absolutely refractory phase the membrane
potential ¢ decreases smoothly whereas the recovery r is almost constant. Some cell
types tend to hyperpolarize, i.e., they initially overshoot the resting state. Action po-
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tentials cannot follow one another immedaitely since the ion channels need to return
to their resting state. The absolutely refractory period characterizes the period during
which the cell is recovering. During this period, it is unable to generate a new action
potential.

Relatively refractory phase The relatively refractory phase is characterized through
a decrease of the recovery variable r as the solution slowly returns to the resting state.
During this phase, the ion channels gradually return to their initial state. A new action
potential can be generated during this phase, however, the required stimulus might be
significantly larger than in the resting state.

Stable non-oscillatory and unstable oscillatory cells

Action potentials occur when the cell membrane depolarizes and then repolarizes
back to the steady state. There are two conceptually different action potentials in the
heart: action potentials for pacemaker cells such as the sinoarial and the atrioventric-
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Figure 6.12: Phase portrait and physiological state diagram for stable non-oscillatory FitzHugh-Nagumo
model with « = —0.1, top, and for unstable oscillatory FitzHugh-Nagumoe model with « = +0.1, bottom.
For the non-oscillatory model, top row, the steady state, i.e., the intersection of nullclines, is situated to
the left of the intersection in the stable regime. For the non-oscillatory model, bottom row, the steady
state, i.e., the intersection of nullclines, is situated to the right of the intersection in the unstable regime.
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ular node, and action potentials for non-pacemaker cells such as atrial or ventricular
muscle cells. Pacemaker cells are capable of spontaneous action potential generation,
whereas non-pacemaker cells have to be triggered by depolarizing currents from adja-
cent cells. To compare non-oscillatory and oscillatory cells, it is convenient to rewrite
the FitzHugh-Nagumo system (6.3.10) in a slightly modified form.

dp=clop+alll—¢]—r] Fr=¢—br—a (6.3.9)

Based on this reformulation, we can easily distinguish between stable non-oscillatory
muscle cells for « < 0 and unstable oscillatory pacemaker cells for & > 0, see figure
6.12. For the documented example, b = 0.5 and ¢ = 100. Figures 6.12, top, show a
stable non-osciallory pacemaker cell for « = —0.1. Right after the action potential,
the membrane returns to its resting state. Figures 6.12, bottom, display a characteristic
membrane potential for oscillatory cells for « = +0.1. The fast and slow variable
undergo an oscillation through the four phase cycle of the regenerative, the active, the
absolutely refractory, and the relatively refractory phase. After this cycle, however, the
membrane potential is above the critical threshold to initiate a new excitation cycle.

Traveling waves of excitation

To account for the nature of traveling waves in excitable media, a phenomenologic
diffusion term div(g) can be added to the first equation of the original FitzZHugh-
Nagumo equations. Based on the assumption that the spatial range of the signaling
phenomenon ¢ is significantly larger than the influence domain of the recovery vari-
able r, the second equation is considered to be strictly local.

¢=div(g) +c|[—-3¢+p—r+1] F=-1[¢p—br—a] (6.3.10)

The easiest assumption is that the flux is proportional to the gradient of the membrane
potential g = D V¢, where D denotes the conductivity. Typical conductivities in car-
diac tissue are 0.05 m/s for the sinoatrial and the atrialventricular node, 1 m/s for atrial
pathways, the bundle of his and ventricular muscle, and 4 m/s for Purkinje fibers [15].
Table 6.2 illustrates characteristic values for action potentials of different cell types.

animal cell type resting | potential | potential | conduc-
potential | increase | duration tivity

[mV] [mV] [ms] | [m/s]

squid (loligo) giant axon -60 120 0.75 35
earthworm (lumbricus) | median giant fiber -70 100 1.00 30
cockroach (periplaneta) | giant fiber -70 80-104 0.40 10
frog (rana) sciatic nerve axon -60--80 | 110-130 1.00 7-30

Table 6.2: Typical value of resting potential, action potential increase, action potential duration, and
conduction speed for action potentials of different cell types.
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