1 Mechanics of the cytoskeleton

We have previously learned about the mechanics of biopolymers. We now have
the proper foundation to learn about the mechanics of networks of biopolymers:
in other words, the cytoskeleton! The microstructure of the cytoskeleton (e.g.,
how the biopolymers are oriented with respect to one another, the number of fil-
aments per unit volume, how they are cross-linked, etc.) can vary dramatically
from cell to cell. It can also vary substantially within different locations of indi-
vidual cells. The mechanics of the cytoskeleton are dependent on the mechanical
behavior of the individual biopolymers making up the cytoskeleton (which we
learned about in the last section), as well as how these biopolymers are organized
into a network (i.e., microstructure). The goals of this next section are to show
some examples of (1) the mechanical implications of different types of cytoskele-
tal microstructure, and (2) how to calculate mechanical properties for a given
cytoskeletal network knowing only the mechanical behavior and microstructural
organization of the individual polymers.

1.1 Mechanics of filopodia

Filopodia are dynamic, cross-linked bundles of actin filaments at the leading
edge of crawling cells. Morphologically, they resemble little fingers, and they are
thought to act as “feelers” as the cell crawls. These bundles of actin quickly grow
out from the leading edge, pushing out the membrane (typically on the order of
~0.1 um/s to form rod-like structures, and then retract (total time for extension
and retraction is on the order of ~100 s). The filopodia are on the order of ~0.2
pm in diameter and 1~5 pum in length. Within a single filopodium, 20~30 actin
tilaments are aligned in parallel [5] with their barbed ends facing the membrane,
and cross-linked by a protein called fascin. At the ends of the filaments within
the filopodia is a protein called capping protein, aptly named since they cap the
actin filaments to prevent further growth.

The way in which cells are able to form filopodia and regulate their structure is
still an active area of investigation. Indeed, even fundamental questions about
their structure, such as how densely cross-linked the actin filaments are, is still
under investigation. The question is whether mechanics can tell us anything
about their structure? In addition, and perhaps more importantly, are mechanics
involved in regulating their structure?
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Figure 1.1: Left,top: Electron micrograph of the actin cytoskeleton within a lamellopodium of a
cell [4]. A dense network of actin filaments can be seen. Several filopodia can be seen protruding
from the edge. Left, bottom: Close up of a filopodium [4]. The aligned bundle of actin filaments
can be seen. Right: Schematic of several important proteins within filopodium. Note that the actin
filaments within each filopodium are bundled together by the cross-linking protein fascin.

We will attempt to try to answer some of these questions here by finding the
maximum length filopodia can be before they will buckle, assuming (1) no cross-
linking is present, or (2) a high degree of cross-linking. We know that the per-
sistence length of F-actin is on the order of ~10 um, while the filopodia are on
the order of ~1 um in length. Since the persistence length of actin is an order of
magnitude larger than the average length of the filaments within the filopodia,
we neglect any entropic contributions to their mechanical behavior, and analyze
the filaments as beams. For more details, see [5], from which the approach here
was followed.

1.1.1 Buckling force

Before we begin our analysis, we first need a relation between the buckling force
of a beam, and its geometry and material properties. Consider a beam of length
L with one end fixed, and with an axial force F applied at the free end (see Figure
1.1.1). The beam will buckle if F exceeds the buckling force,
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Fpuckie = 412 (1.1.1)

where E is the Youngs modulus of the beam, and I is the moment of inertia.
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Figure 1.2: A beam with one end fixed and a force F applied at the free end will buckle if F is large
enough.

1.1.2 Membrane force

Figure 1.3: The force exerted on a cylindrical protrusion by a membrane is proportional radius of
the cylinder.

Next, we need an estimation of the force that the membrane exerts on the actin
bundle at the ends of the filopodia. If we idealize the actin bundle as a cylinder
of radius r, then we need to find the force Fy., exerted on this cylinder by the
membrane. A simple approximation by can be made by making an imaginary
cut through the cylinder and membrane. The resultant force of the membrane is
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equal to the product of the surface tension N of the membrane and the circumfer-
ence of the cylinder:

Fyem = 277N, (1.1.2)

For neutrophils, the surface tension as measured through micropipette aspiration
has been found to be approximately 35 pN/um [3], resulting in a force of 22 pN
for a filopodium 100 nm in radius. However, this force does not take into account
membrane bending and breaking of membrane-cortex links, both of which will
contribute resistance to protrusion [6]. Experimentally, ~ 50 pN of force has
been found to be necessary to form filopodium-like membrane tethers within
neutrophils citeshao96. This likely is a more accurate estimation of Fye;,, and so
we will assume Fyer, = 50 pN.

1.1.3 Maximum length before buckling: no cross-linking

We will now calculate the maximum filopodium length before buckling occurs,
assuming no cross-linking. Assume that there are n = 30 actin filaments within
the bundle, with each filament having a radius of r,;;, = 3.5 nm and Youngs
modulus of E,.;;;, = 1.9 GPa. Each filament will feel a force of Fyep, /1, and so the
maximum filopodium length before buckling occurs is
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Plugging in the appropriate values gives L,,; = 0.57 pym. Therefore, for a
tilopodium containing 30 actin filaments that are not cross-linked, it can only
be 0.57 um long before it will buckle. This is much shorter than the 1~5 ym long
filopodia observed in vivo. Lets see what happens if we now take cross-linking
into account.

1.1.4 Maximum length before buckling: with cross-linking

In order to investigate the effect of cross-linking, we assume that the bundle is
tightly cross-linked such that the bundle acts as a single filament of effective ra-
dius 74,,41.- To calculate this radius, we know that for a bundle of # filaments, the
total cross-sectional area of F-actin is
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Figure 1.4: Two different approximations for analyzing the filopodium. One is where we assume
no cross-linking. The second is where we assume that the bundle is so tightly cross-linked, it
behaves as single, large cylinder.

nﬂr%etin = ﬂ(ﬁractin)z- (1.1.4)

The term in parenthesis on the righthand side of 1.1.4 gives the radius of a cylin-
der with the same cross sectional area of n actin filaments, which is the effective
radius of the bundle:

Thundle = VM actin- (1.1.5)

Now, the moment of inertia of the bundle becomes
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Finally, assuming Fy;,ckje = Fnem, then
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Substituting the appropriate values gives a value of L;; = 3.2 um. In other words,
for a highly cross-linked filopodium, it can be 3.2 um long before buckling occurs.
Comparing Equations 1.1.3 and 1.1.7, we find that the ratio of L;/L,,c = /1.
The more filaments that are in each filopodium, the more pronounced the differ-
ence in the buckling lengths between the cross-linked and uncross-linked filopo-
dia.

What can be learned from our analysis? We have already learned that filopo-
dia 1~5 um are commonly observed in vivo. Our analysis showed that without
cross-linking, filopodia will buckle before they are able to reach these lengths.
However, if they are highly cross-linked, they are much more stable mechani-
cally, and won’t until they are several microns long. This suggests that there
is a high degree of cross-linking within filopodia [5]. Finally, our analysis also
suggests the possibility that filopodia length is governed by mechanics, in they
they are not longer since this will cause them to buckle! Although this is purely
speculation, the mechanical regulation of cytoskeletal structure within subcellu-
lar structures such as filopodia continues to be an active area of research.

1.2 Mechanics of the red blood cell cytoskeleton

The mechanical behavior of red blood cells is very important for their function.
For example, in order to deliver oxygen to different parts of the body, they must
be able to squeeze through tiny capillaries (many of which have diameters that
are smaller than the cells themselves), and then return to their original shape
upon exiting the capillaries.

One of the main mechanical constiuents of red blood cells is the cytoskeleton. The
role of its distinct and highly structured architecture in the function of red blood
cells continues to be an active area of research. In red blood cells, the cytoskele-
tal network is bound to the membrane in a two-dimensional network. The main
constiuent of the network is a polymer called spectrin. The spectrin polymers are
bound together at distinct vertices, or “junctions”. At each vertex is a junctional
complex consisting of several proteins (including F-actin) that serve to cross-link
the spectrin polymers together, as well as anchor the cytoskeletal network to the
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membrane. There are also protein complexes along the length of the spectrin
polymer that anchor it directly to the membrane. The red blood cell cytoskele-
ton is highly structured. At each junction, six spectrin polymers are commonly
observed radiating from each junction. This is termed sixfold connectivity. Four-
fold connectivity, or four spectrin polymers radiating from each junction, has also
been observed. A question one can ask is what are the structural and functional
implications of these different connectivities?

Figure 1.5: Electron micrographs of the red blood cell cytoskeleton with different connectivities.
Adapted from [2]

As the analytical and numerical tools for analyzing the mechanics of the red
blood cell cytoskeleton become more sophisticated, the impact of such distinct
microstructures on the mechanical behavior of red blood cells are becoming more
well understood. However, we can also learn a lot from simple analyses as well.
We demonstrate here a procedure for calculating the mechanical properties of the
red blood cell cytoskeleton from the mechanical behavior of its polymers and its
microstructure. By seeing how these properties change with different microstruc-
tures, we also propose why red blood cells sixfold connectivity may be advanta-
geous for red blood cells for their function. For more detailed analyses, see [1],
from which the approach here was followed.
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1.2.1 Shear modulus and strain energy density

We know that the shear modulus G gives the stiffness of an object in resisting
shear, and it relates the shear stress 7 that results from a given (engineering) shear
strain vy,

T = Gy. (1.2.1)

Consider a block with length /, height /1, depth d, and shear modulus G. We shear
the block by displacing the top surface by a small amount 6, which results in the
sides of the block making an angle of y with an imaginary vertical line. We know
that

o
L "
o

h
= tanvy

~ (1.2.2)

where in the last line the approximation tany ~ 7 is valid for small y. In other
words, the shear strain is simply the angle with the vertical, y. Since it takes
work to shear the block, it must undergo a change in strain energy AW. Its strain
energy per unit undeformed volume, called the strain energy density, is

AW

Awy = — 1.2.
Wy V 7 ( 3)
where V = [wh is the undeformed volume of the block. Since we know the shear
modulus and shear strain, we can compute its strain energy density from these

two quantities as

m%:%G%. (1.2.4)

Alternatively, lets say that we know the strain energy density of the object for a
certain shear strain y, and want to know its shear modulus. Upon inspection of
1.2.4, we find that we can calculate the shear modulus by differentiating its strain
energy density:
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Therefore, if we know the change in strain energy AW of the block as it under-
goes shear strain y, we can find its shear modulus G by simply dividing by the
undeformed volume to get Aw,, and differentiating twice with respect y!
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Figure 1.6: (Top) A block undergoing shear strain 7 by displacing the top surface by a small
amount 4. (Bottom) An equivalent two-dimensional block undergoing shear.

Now, consider the case where the block is “thin” (i.e., it has a very small depth
d). For thin structures, we usually are not interested in how quantities such as
stress and strain change with depth. It is mathematically convenient to treat them
as “two-dimensional” structures by integrating out the depth of the block. For
example, instead of a shear stress (with units of force per area), we can define a
shear force per unit length N; such that

N, = d (1.2.6)

where we have assumed that the shear stress is constant through the depth. This
can be related to the shear strain analagous to 1.2.1 as
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Ns = Ksy (1.2.7)

where K is the shear modulus,

Ks = Gd. (1.2.8)

Similarly, analagous to Equations 1.2.3, 1.2.4, and 1.2.5, the strain energy per unit
area (instead of volume) w, = AW /A can be calculated from the shear modulus
and shear strain as

1
Aw, = ~Ksy?,

. (1.2.9)

and the strain energy density can be differentiated to obtain the shear modulus
as

2Aw,

32 =K (1.2.10)

Using these relations, we will now calculate K for the red blood cell cytoskeleton
assuming sixfold or fourfold connectivity. Our strategy is to find the total change
in strain energy AW for a given shear strain y, divide by the undeformed area to
obtain Aw,, and finally find K; using 1.2.10.

1.2.2 Sixfold connectivity

In order to analyze the cytoskeletal network, we first need to determine how to
model the polymers and microstructure. In vivo, the spectrin polymers have a
countour length of L = 200 nm, and a persistence length of [, = 15 nm. The
junctions are separated by a distance of 75 nm. Since [, << L and the spectrin
polymers are not fully stretched out (i.e., R < L), then we assume that the spectrin
polymers behaves as entropic springs. In this case, we can analyze the cytoskele-
ton as a network of springs with spring constant ks, = (3kT)/(Lb), connected
at the junctions by freely rotating cross-links. In this case, we can find the strain
energy by finding how much the springs deform under shear strain 7.

In order to simplify our analysis, we can analyze a unit cell of the network instead
of an entire network. Consider a sixfold network of springs with constant k. If
we use an equilateral triangle of springs with constant ks, as the unit cell of the

10
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network, then we can see in Figure 1.2.2 that each pair of neighboring triangles
contributes a spring between each pair of junctions, resulting in two springs of
stiffness ks, (or equivalently, a single spring of stiffness 2k,) between each pair
of junctions. We can correct this by making the stiffness of our springs in our
equilateral triange equal to ks /2.

/
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Figure 1.7: An equilateral triangle of springs with constant ks, is the unit cell for a sixfold network
of springs with constant 2ks, (left). In contrast, an equilateral triangle of springs with constant

ksp/2 is the unit cell for a sixfold network of springs with constant ks, (right), which is the desired
result.

Now, consider an equilateral triangle of springs, each with length Rg. The triangle
has a height of

V/3Rg

>
If we now displace the top vertex by a small amount é such that the triangle
undergoes shear strain 7y, then

(1.2.11)

tany =

= o

2
" (1.2.12)

V3Rg

11
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Figure 1.8: An equilateral triangle of springs undergoing shear strain 7y by displacing the top
surface by a small amount 6.

But tany = 7y for small §, so 1.2.12 can be rewritten as

_ V3Ryy
=

Under this deformation, the left and right diagonal springs lengthen and shorten,
respectively, while the bottom spring does not change length. The deformed
length R of the left diagonal spring can be found from geometry:

(3
() (%)

R35  R362
— R2 0 0
\/ TR TR

N
Ry  R%

5 (1.2.13)

= Ry (1.2.14)

Since ¢4 is small, we ignore higher order terms in 9, and 1.2.14 becomes

RzRo,/lJri. (1.2.15)
Ro

12
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We can simplify 1.2.17 even further by noticing that

14 -2 2—1+5+‘52
B Ry 4R2
5

14 — 1.2.16
+ Rg ( )

Q

if we ignore higher order terms. Thus, 1.2.17 can be rewritten as

R%RO
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Ro+ 5. (1.2.17)
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This implies that the left diagonal spring increases in length by 6/2 to first order.
It can be shown similarly that the right diagonal spring shortens by the same
amount. We know that the change in strain energy for a spring with constant ksy,
original length Ry and new length R is

1
AWsp = Sksp(R — Ro)%. (1.2.18)

The total change in strain energy is the sum of the change in strain energy for all
three springs. Assuming a spring constant of ks, /2, this expression becomes

AW = AW+ AWSS" 4 Awlstton

= 5 (%) @ - rap o (5] (Ro = 5/2) ~ R 0

k&2
= S’é . (1.2.19)

The strain energy density can be found by dividing AW by the undeformed area
of the triangle:

13
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We can write the strain energy density in terms of y by substituting 1.2.13 into
1.2.20, which becomes

3kspy?
Aw, = %, (1.2.21)
Finally, the shear modulus of the network K; is
% Aw,
b=
3k
= \/—4 °F (1.2.22)

How does our prediction compare to experiments? Substituting b = 30 nm, T =
300 K, L = 200 nm gives Ks = 0.9 uN/m. Experimental measurements of K
of red blood cell cytoskeletons in which the membrane was removed showed
average values of the shear modulus to be K; = 2.4 uN/m. This is roughly twice
our predicted value but still in excellent agreement. What are some sources of
error? One may be our approximation of spectrin as a Gaussian chain. Remember
that when R approaches L, the stiffness of a real chain will increase, while the
stiffness of a Gaussian chain will not. Thus, the Gaussian approximation is best
when L >> R, whereas for the red blood cell cytoskeleton, L is only a little more
than twice that of R.

1.2.3 Fourfold connectivity

We will now calculate K; for a fourfold network. Here, our unit cell is a square
lattice of springs, each with spring constant ks, /2 and undeformed length Ry. If

14
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Figure 1.9: A square network of springs undergoing shear by displacing the top surface by a small
amount 6.

we displace the top surface of the square by a small amount §, then the top and
bottom springs do not change length, and the deformed lengths of the left and
right springs are

R = /R3+¢2

R3 (1.2.23)

Q

if we ignore higher order terms. What this means is that, to first order, the left and
right springs do not change length! This implies that the change in strain energy
will be zero, and so Ks = 0! Intuitively, this makes sense, since the stiffness in
shear of our networks of springs arises due to the springs changing in length.
However, if the springs do not change length, then the network can not resist
shear, and so it has no stiffness in shear. This suggests that sixfold connectivity is
highly advantageous for red blood cells compared to fourfold connectivity, since
sixfold connectivity allows resistance to shear! Such resistance may be important
in allowing red blood cells to squeeze through tiny capillaries, and return back to
their original shape.

15
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