
3 Biopolymers

3.1 Motivation

3.2 Energy

3.2.1 The Euler Bernoulli theory

In the introduction to mechanics, we have discussed that several kinematic assump-
tions could be made to reduce the set of governing equations. The simplest theory
for one dimensional structures is the Euler Bernoulli beam theory. Its kinematic as-
sumptions are referred to as the Euler Bernoulli hypothesis in the mechanics literature.
In particular, they consist of three kinematic assumptions for the normal to the cross
section under applied loads:

• normals remain straight (they do not bend)

• normals remain unstretched (they keep the same length)

• normals remain normal (they remain orthogonal to the beam axis)

Based on these assumptions, the total displacement of a beam can be expressed in the
following form.

utot(x, z) = u(x)− z w(x),x (3.2.1)

It consists of an axial stretch u(x) which is parameterized in the axial direction x and
component −z w(x),x which is introduced through the rotation of the normal of the
beam axis w(x),x. The latter contribution varies linearly across the beam thickness
z. Recall that we will use what some of you refer to as the European notation for
the derivative, which is w(x),x = dw / dx. According to its definition, the strain εxx
follows as εxx = utot

,x .

ε = utot
,x = u,x − z w,xx (3.2.2)

Since we required the normal to be inextensible, there are no strain components in the
out of plane direction, i.e. εxz = εzz = 0. For the sake of simplicity, we have droped the
indices xx on the only relevant strain component implying that ε = εxx. Take a closer
look at the strains! They consist of a contribution εcon = u,x which is independent of
the z-coordinate and thus constant over the thickness and a contribution εlin +−z w,xx
that varies linearly over the thickness. The former is related to the axial deformation in

18



3 Biopolymers

the form of tension and similar to the one we have analyzed for the one dimensional
truss. The latter is related to the transverse deformation in the form of bending. The
overall deformation of beams can thus be understood as the superposition of two basic
deformation modes, axial stretching and bending. These two modes will be addressed
independently in the following subsections.

3.2.2 Axial deformation - Tension

Let us first take a look at the axial deformation, and thereby repeat the equations we
have discussed in the motivation section for the one dimensional bar. We restrict our-

f (x)

u(x)xz
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N N+N,xdx
σ(x)

Figure 3.1: Axial loading of one dimensional structure ◦ Stresses σ are constant across the cross section

selves to the strain contribution that is constant across the thickness ε = εcon = u,x
assuming that the linear contribution is negligibly small εlin = −z w,xx ≈ 0. This situa-
tion is depicted in figure 3.1. The axial strains are the simply given as follows.

ε = u,x (3.2.3)

For a linear elastic material, the axial stresses then simply follow as

σ = E ε = E u,x (3.2.4)

where E is young’s modulus. The stress resultant N, i.e., the normal force in axial
direction simply follows from the integration over the total height h.

N =
∫ +h/2

−h/2
σ dz = σ h = E h ε (3.2.5)

The equilibrium equation follows straightforwardly from summing all the forces in
figure 3.1.

∑ fx
.= 0 N,x + f = 0 (3.2.6)

The combination of the above equations renderns the Laplace equation

EA u,xx + f = 0 with EA ... axial stiffness (3.2.7)

which is often expressed in terms of the Laplace operator ∆( ◦ ) = ( ◦ )xx = d( ◦ ) / dx2

as EA ∆u + f = 0. It relates the axial deformation u to the axial force f . Herein, EA
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3 Biopolymers

r A E EA

microtubule 12.5 nm 491 nm2 1.9·109 N/m2 93·10−8 N
intermediate filament 5.0 nm 79 nm2 2.0·109 N/m2 15·10−8 N
actin filament 3.5 nm 39 nm2 1.9·109 N/m2 7·10−8 N

Table 3.1: Axial stiffness EA of major consituents of cytoskeleton: microtubules, intermediate filaments
and actin filaments

is the axial stiffness. It characterizes the resistance of the structure with respect to an
axial deformation or stretch. Given the radius r of the cross section of microtubules,
intermediate filaments and actin filaments and Young’s modulus E, you can calculate
the cross section area A = π r2 and the axial stiffness EA.

Example Determine the elongation of an active muscle with Young’s modulus E =
40MPa= 4 · 107N/m2, a cross section of A = 1000mm2 =10−3m2 and a total length l =
10mm= 0.01m! Assume that the muscle is loaded by a weight of m = 10kg. What is its
elongation ∆l and its its strain ε? ◦ The force acting on the muscle is N = m g with the
acceleration due to gravity g = 10m/s2 = 10N/kg, thus N = 10kg·10N/kg = 100N.
The elongation ∆l then follows as ∆l = ε l = σ l / E = N l / [EA] = 100N · 0.01m / [4 ·
107N/m2 · 10−3m2] = 2.5 · 10−2mm. The strain simply follows as ε = ∆l / l = 2.5 ·
10mm / 10 mm = 0.0025 = 0.25%.

3.2.3 Transverse deformation - Bending

We have seen that the axial deformation can be described in terms of a second or-
der partial differential equation. What about the transverse deformation? How is
the out of plane deformation related to the out of plane forces? Let us elaborate

q(x)

w(x)

x

z

dx

Q

M

Q+Q,xdx

M+M,xdx

σ(x)
h/2

h/2

Figure 3.2: Transverse loading of one dimensional structure ◦ stresses σ vary linearly across the cross
section

the component of the strain that contribution that varies linearly across the thickness
εlin = −z w,xx and for now assume that the constant strain contribution is negligibly
small ε = εcon = u,x ≈ 0. This situation which depicted in figure 3.2 is characterized
through the following strain displacement relation.

ε = −w,xx z = κ z (3.2.8)
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3 Biopolymers

Here, we have introduced the curvature κ. If you think of an arc, κ = 1/r would be
the inverse of the underlying circle’s radius, κ has thus the unit of 1/length. Again, the
stresses just simply follow through Hooke’s law of linear elasticity.

σ = E ε = −E w,xx z = E κ z (3.2.9)

For a moment, think of bending a beam. At the inner side, the beam will be compressed
to a shorter total length while at the outer side, the beam will be stretched. The stress
in a beam thus varies linearly across the cross section. At the inner side, it the stress
in negative or compressive while at the outer side, it is positive or tensile. The dash
dotted line in figure 3.2 is called the neutral axis. As you can see in the figure, this is the
axis in which the normal stresses vanish. The stress resultant of this linearly varying
stress is the bending moment M which is simply given by integrating the stress times
the distance to the neutral axis z over the cross section height.

M =
∫ +h/2

−h/2
σ z dz =

∫ +h/2

−h/2
E κ z2 dz = EI κ (3.2.10)

We have introduced the abbreviation I =
∫ +h/2
−h/2 z2 dz = h3 / 12 for the integral of z2

over the height, assuming a unit width of the cross section. This geometric property of
the cross section is called the geometrical moment of inertia. It is a geometric measure
of the resistance of the cross section to bending. In combination with Young’s modu-
lus E, the moment of inertia I defines the bending stiffness EI. For beding problems,
we typically analyze two equilibrium equations, i.e., the equilibrium of forces in the
transverse direction and the equilibrium of bending moments.

∑ fz
.= 0 Q,x + q = 0

∑ m .= 0 M,x − Q = 0
(3.2.11)

A combination of (3.2.111) and (3.2.112) yields the following simple second order equa-
tion.

M,xx + q = 0 (3.2.12)

By making use of the constitutive equation M = EI κ and the kinematics κ = −w,xx
we obtain the classical fourth order differential equation for thin beams, the Euler-
Bernoulli beam equation.

q = EI w,xxxx with EI ... bending stiffness (3.2.13)

It relates the transverse force q to the fourth gradient of the transverse displacements
w in terms of the bending stiffness EI. Mathematicians would typically rewrite the
plate equation in compact notation in terms of the Laplace differential operator ∆(◦) =
div(∇(◦)) = d2(◦)/dx2 = (◦),xx as q = EI ∆2w. Given the radius r of the cross section
of microtubules, intermediate filaments and actin filaments and Young’s modulus E,
you can calculate the moment of inertia for circular cross sections I = π r4 / 4 and the
bending stiffness EI.
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3 Biopolymers

r I E EI

microtubule 12.5 nm 19,175 nm4 1.9·109N/m2 364·10−25Nm2

intermediate filament 5.0 nm 491 nm4 2·109N/m2 10·10−25Nm2

actin filament 3.5 nm 118 nm4 1.9·109N/m2 2·10−25Nm2

Table 3.2: Bending stiffness of major consituents of cytoskeleton: microtubules, intermediate filaments
and actin filaments

3.3 Entropy

Example: Persistence length of spaghetti Try to guess the persistence length A
of spaghetti at room temperature. Would it be smaller than the spaghetti length, ap-
proximately the same or larger? Assume spaghetti have a diameter of d = 2mm and
a Young’s modulus of E = 1 · 108J/m3 = 1 · 108N/m2. The temperature and the
Boltzmann constant are T = 300K and k = 1.38 · 10−23J/K. The persistence length of
spaghetti is A = [EI] / [kT], with the moment of inertia I = [π r4] / 4 with r=1mm. Ac-
cordingly, A = [1 · 108 N/m2 π mm4] / [4 · 1.38 · 10−23 J/K · 300 K] = 1.8 · 1018m. An un-
cooked spaghetti changes its direction at length scales of the order of A = 1.8 · 1015km.
Is that a lot? Well, yes, that’s quite stiff if you consider that the distance from the earth
to the moon is about 3.8 · 105km!

Example: Persistence length of flagella Flagella are tail-like structures that project
from the cell body of certain prokaryotic and eukaryotic cells. Flagella are hollow
cylinders, of the order of 10µm long, used for locomotion. Calculate the persistence
length A of flagella at room temperature T = 300K. Assume an inner and outer radius
of rint = 0.07 µm and rout = 0.10 µm, respectively, and a Young’s modulus of E =
1 · 108 J/m3 = 1 · 108 N/m2. For hollow cylinders, I = π [ rout 4− rint 4 ] / 4. Accordinlgy,
A = [EI] / [kT] = [1 · 108 J/m3 π [0.104 − 0.074] µm4] / [4 · 1.38 · 10−23 · J/K 300 K] =
1.44 m. The persistence length of flagella is A = 1.44m. As expected, they are relatively
stiff to support cell locomotion.

3.4 Summary

3.5 Problems

Problem 3.1 - Polymerization kinetics

A polymer starts to grows in a monomer solution of initial concentration C0. Assume
the rate equation for the number of monomers in the filament is governed by the ki-
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3 Biopolymers

netics of assembly as discussed in class.

dn
dt

= kon C− ko f f

In class, we have assumed that the free monomer concentration C does not change
in time. Assume now, that no new monomer is added to the solution as the filament
grows.

• Sketch the evolution of the free monomer concentration C as a function of time t.

• Determine the equation for the free monomer evolution, i.e., the equation for this
plot, at t→ 0.

• Determine the asymptotic value for the concentration C as t→ ∞.

Problem 3.2 - Polymerization kinetics

To get a better feeling for stresses that the cytoskeleton induces on the cell membrane,
this problem deals with determining membrane pressure resulting from microtubules.
Consider a representative cell of radius 10µm with a tubulin (heterodimer) concentra-
tion C of 1µM.

• Calculate the total length of microtubules that could be made from this amount
of protein if each dimer is approximately 8 nm long.

• Assume all microtubules connect the center of the cell with its membrane. What
is the average membrane area per microtubule?

• Assume each microtubule generates a force of 5 pN. What is the total pressure
exerted on the cell membrane?

Problem 3.3 - Solid vs hollow structures

In class, we have assumed microtubules to be solid cylinders with a Young’s modulus
of E = 1.9 · 109N/m2 and a radius of approximately rsolid =12.5nm. We have calculated
their cross section area Asolid = π rsolid 2 to Asolid = π (12.5nm)2 = 491 nm2 and their
moment of inertia Isolid = 1/4 π r4 to Isolid = 1/4 π (12.5 nm)4 = 19,175 nm4. Actually
this was an oversimplification! In reality, microtubules are hollow cylinders. The outer
and inner radii have been determined to router =14.0 nm and rinner =11.0 nm.

• Calculate the cross section area Ahollow = [ router 2 − rinner 2 ] of microtubules when
considered as a hollow cylinders.

• Calculate the moment of inertia Ihollow = 1/4π[ router 4 − rinner 4 ] of microtubules
when considered as a hollow cylinders.
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3 Biopolymers

• Calculate the radius rsolid of an imaginary solid cylinder which would have the
same cross section area as microtubules.

• Calculate the moment of inertia of Isolid of this imaginary solid cylinder of equal
cross section area.

Problem 3.4 - Bending stiffness

To gain a better understanding of the bending stiffness of microtubules, consider mi-
crotubules as cantiliver beams of length L = 10µm, clamped on one side and loaded by
a point load F on the other. We are interested in the transverse force F that creates a
beam deflection of w = 1µm on the free end.

• Compare the forces needed to deform microtubulues when considered as hollow
cylinders (use the moment of inertia Ihollow calculated in the previous problem)
with the forces needed to deform an imaginary solid cylinder of equal volume
(use the value Isolid calculated at the end of the previous problem).

• Discuss the results! Why, do you think, nature prefers hollow structures over
solid strucutres?

Hints: To solve this problem, you might need the equation for the Euler Bernoulli beam
EI w,xx −M = 0 as derived in class. In addition, you need to know that the bending
moment for a cantiliver beam is M = [L− x]F. Combine this equation with the beam
equation. You then need to integrate the beam equation twice. To determine the inte-
gration constants, you need to use the boundary conditions of a cantiliver w(0) = 0
and w′(0) = 0. Solve the final equation for the force F for the different moments of
inertia Ihollow and Isolid!
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