
2 Introduction to mechanics

2.1 Motivation

Thermodynamic bodies are being characterized by two competing opposite phenom-
ena, energy and entropy which some researchers in thermodynamics would classify as
’cause’ and ’chance’ or ’determinancy’ and ’random walk’, see Müller and Weiss for
a nice discussion of both [9]. While at low temperatures energy driven phenomena
dominate the body’s behavior in terms of mechanical strain energy, stress and strain,
the influence of entropy increases significantly with increasing temperature. Think
about biopolymers and biomembranes. When heated up, polymers will no longer rest
at a constant position inn space. Rather their individual molecules will move around
giving rise to thermal fluctuation. Not only the temperature but also the polymer den-
sity in the solution determines the state of a biological substrate. At higher densities,
the substrate takes a condensed state of matter and energy dominates its behavior. At
lower densities, however, the solution phase is favored in which molecules can move
around freely. This state is rather dominated by entropic behavior. To account for
both phenomena, it is commont to express the overall free energy ψ as a sum of strain
energy W and the entropy S whereby the latter is weighted by the negative absolute
temperature T.

ψ = W − T S (2.1.1)

At a condensed state, the behavior is almost solid like, the strain energy W dominates
the response at relatively high density or zero temperature T. At a solute state, the
behavior is rather fluid like, the entropy contribution T S dominates at relatively low
density or finite temperature T. A transition between phases obviously takes place at
ψ = 0, or, equivalently, at W = T S.
Remember what Chris said in class about the zero-temperature limit. This does not
literally mean that the cell is frozen to zero degrees. Rather it is a common way of
expressing that for the particular process we are interested in, the thermal or entropic
contribution −T S is negligible as compared to the mechanic contribution W.

2.2 Energy

2.2.1 Motivation

Mechanics is actually super simple and nothing to be afraid of. In fact, it all boils
down to three basic equations. Unfortunately, for technical reasons, or what some peo-
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2 Introduction to mechanics

ple would claim simplifications, these three equations are often phrased in different
terms and different symbols are used for clarification, or sometimes rather for confu-
sion. Within these notes, we have decided to use the same notation throughout and
point out explicitly when a different notation has found common acceptance in the
literature. Now, think of your strength of materials class, or, if you hadn’t taken one
before, just think of your high school classes in physics! What are the three most im-
portant equations that you would remember when thinking of mechanics?

Your three most important equations of mechanics Here are the results of our class
survey. What are the most important equations that you would remember when think-
ing of mechanics? Surprisingly, everybody remembers the constitutive equations, the
stress strain relations, which are sometimes also referred to as material model. Seven
of you listed its one dimensional version in the form of Hooke’s law two listed Hooke’s
law for a linear spring F = k x, one listed the its version for torsion T = L Θ and two
listed even listed the three dimensional version εx = 1

E [ σx − νσy − νσz ]. Related to the
above equation, one listed the definition of Poisson’s ratio ν = −εtrans/εlong and one
mentioned the strain energy of a Hooke’an material W = 1 / 2 σ ε. Four of you stated
the equilibrium equations, which are sometimes als referred to as momentum balance
in the related continuum mechanics literature. Two of them used the one dimensional
form for rigid bodies F = m a, two mentioned its form for a deformable continuum
divσ + ρ b = ρ ü. Three remembered the kinematic equations, two expressed them
for a one-dimensional bar ε = ∆l / l, one for a continuum ε = ∂u / ∂x. Finally, two
of you remembered the relation between stress and stress resultants σ = N / A. Two
even stated the differential equation for beam bending y′′ = M / [EI] which actually
is a result of the combination of the three sets of equations discussed above. The cool
thing is, all the equations you remembered will be addressed in this class!

We will repeatedly use the three equations that most of you mentioned. In this section,
we will relate them to a simple one dimensional truss. Later, we will discuss the same
set of equations for three dimensional continiuous bodies, for beams, for membranes
and for shells. But for now, let’s just stick to the one dimensional truss.
Let us first agree on how we could characterize the state of deformation of the truss! A
typical measure would be the elongation or change in length ∆l. Sometimes we are not
only interested in the total elongation at the end of the truss but rather in the elongation
everywhere in the truss. We thus introduce the notion displacement u(x) with the
understanding that the total elongation is equivalent to the end displacement u(x =
l) = ∆l provided the other end of the truss is fixed u(x = 0) = 0. More important than
the absolute displacement u(x) is the relative displacement with respect to the original
length ε = ∆l / l. This ratio would be referred to as strain and is typically associated
with the symbol ε provided we restrict ourselves to small deformations. It takes the
following general definition.

◦ kinematics ε = lim
x→0

u
x

=
du
dx

= u,x homogeneous ε =
∆l
l

(2.2.1)
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2 Introduction to mechanics

Hey, I hope you don’t mind if I continue using the abbreviation d( ◦ ) / dx = (◦),x
which someone in class referred to as the European notation for the derivative. Some-
times, for one dimensional problems, the notion stretch is used instead of strain, stretches
are often denoted by λ but take the same definition. For homogeneous one dimen-
sional structures u,x is constant along the length l and thus, indeed ε = ∆l / l. The
second important equation is the relation between strain and stress which essentially
characterizes the material behavior. In the simplest form, the strain ε can be related to
the stress σ in a linear way through Hooke’s law.

◦ constitutive equation σ = σ(ε) linear elastic σ = E ε (2.2.2)

The constant E is referred to as Young’s modulus, sometimes it therefore also denoted
as Y. Recall that stresses have the unit of force per length squared or force per area and
strains are unitless. Young’s modulus thus has the same unit as stress, i.e. force per
length squared.

f

N N

l ∆l

N
f

N + N,xdx

dx
Figure 2.1: One dimensional truss of initial length l subject to axial force f which stretches it by the
amount ∆l (left) and infinitesimal truss element of length dx with resultant forces N on the negative and
N + N,x dx on the positive side

The third and last equation you should remember is the equilibrium equation. Unfor-
tunately, there is no such thing as stress equilibrium. Equilibrium is a relation between
forces. So now, how do we relate the stress inside the truss to the force acting on a par-
ticular cross section of the truss? Do you remember the definition of stress σ = N / A
as force N per area A? In general, the force N sometimes also referred to as stress re-
sultant can be obtained by integrating the stress over the cross section area dydz = A.

◦ stress resultant N =
∫∫

σ dydz homogeneous σ =
N
A

(2.2.3)

For the particular case of a homogeneous cross section with constant EA, we have
N = EA ε. Now, recall force equilibrium as it was introduced in your statics class.
Take a look at a small, an infinitesimal, truss element. Equilibrium states that the sum
of all forces acting on element must vanish, ∑ f .= 0. Summing up all forces along
the truss axis as displayed in figure 5.3, we get the following expression [−N ] + [ N +
N,x dx] + [ f dx ] = 0. This equation can be further simplified, as the −N term and +N
term cancel. The remaining equation is devided by dx to render the force equilibrium
equation for a one dimensional truss.

◦ equilibrium ∑ f .= 0 in axial direction N,x + f = 0 (2.2.4)
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2 Introduction to mechanics

This equation tells us something about forces acting on the truss but, unfortunately, it
does not tell us anything about what’s going on inside the truss! To look inside the
truss, we have to ’convert’ the stress resultant N to the stress measure N = A σ, make
use of the constitutive equation σ = E ε and the truss kinematics ε = u,x. The equilib-
rium equation N,x + f = A σ,x + f = EA ε ,x + f = EA u,xx + f = 0 then translates to
the classical Laplace equation for trusses

◦ differential equation EA u,xx + f = 0 or EA ∆u + f = 0 (2.2.5)

In the mathematical literature, this second order differential equation for the unknown
displacement u would typically be expressed in terms of the Laplace differential oper-
ator ∆ = ∇2 = d2( ◦ ) / dx2 = ( ◦ ),,x. For homogeneous problems the solution would
simply be given as u = N L / [ EA ] with EA characterizing the axial stiffness of the
truss. Now, let’s try to generalize this concept to three dimensions!

2.2.2 Kinematics: The strain displacement relation

What is strain? The equations that relate strain and displacement are the kinematic
equations. These are general equations that characterize the deformation of a physical
body without studying its physical cause. The strain components can be represented
in a matrix. Mathematically speaking, the strain components in the matrix can be
transformed into any other coordinate system, therefore the strain is considered to be a
second order tensor, a ndim × ndim matrix with related base vectors where ndim = 1, 2, 3
is the spatial dimension of the problem. The matrix of strain components is symmetric
such that εxy = εyx, εyz = εzy and εzx = εxz. Let us look at small strains first and try
to generalize the strain expression we had introduced for the one dimensional truss.
For the general three dimensional setting there are three normal strains εxx, εyy and εzz,
one for each direction in space.

εxx = lim
x→0

u
x

=
du
dx

εxx = u,x

εyy = lim
y→0

v
y

=
dv
dy

εyy = v,y

εzz = lim
z→0

w
z

=
dw
dz

εzz = w,z

(2.2.6)

Normal strains indicate a stretch of the body, they are related to volumetric changes.
There are deformation modes, however, for which the body does not undergo any vol-
umetric changes at all. These isochoric deformations are related to changes in angles
which are represented through the shear strains εxy, εyz and εzx.

εxy =
1
2

[
du
dy

+
dv
dx

]
εxy = 1

2 [ u,y + v,x ] = εyx

εyz =
1
2

[
dv
dz

+
dw
dy

]
εyz = 1

2 [ v,z + w,y ] = εzy

εzx =
1
2

[
dw
dx

+
du
dz

]
εzx = 1

2 [ w,x + u,z ] = εxz

(2.2.7)

12



2 Introduction to mechanics

You could imagine those as sliding modes of deformation. To clearly distinguish nor-
mal and shear strains, sometimes the symbol γ is used for the components of the shear
strain. The notiation γ introduces the engineering strain, it differs from the continuum
strain ε by a factor two, i.e. γxy = 2 εxy, γyz = 2 εyz and γzx = 2 εzx.
The normal and shear strains we have introduced so far characterize the kinematics
of body at small deformations. Actually, there are some non-linear terms in the strain
expression which we have neglected thus far. Just imagine cell squeezed around in
its physiological environment! Its deformations can be huge as compared to its size!
For bodies which undergo large deformations, it is essential to introduce finite kine-
matics with a truly nonlinear strain displacement relation. The key kinematic quantity
in large deformation problems is the deformation gradient F, the gradient of the new
position [ x + u, y + v, z + w ] with respect to the old position [ x, y, z ]. In contrast to the
strains, the deformation gradient is a non-symmetric second order tensor that consists
of a matrix with the following entries and the corresponding base vectors.

Fxx = 1 + u,x Fxy = u,y Fxz = u,z

Fyx = v,x Fyy = 1 + v,y Fyz = v,z

Fzx = w,x Fzy = w,y Fzz = 1 + w,z

(2.2.8)

The strains at large deformation that will be relevant in the following chapters are
the Green Lagrange strains. In the continuum mechanics literature, they are typi-
cally introduced as Eij = 1

2 [ FkiFkj − δij ] which is a short term notation for Eij =
1
2 [ FxiFxj + FyiFyj + FziFzj − δij ]. This abstract definition introduces the three normal
strain components Exx, Eyy and Ezz and the three shear strain components Exy, Eyz and
Ezx.

Exx = u,x + 1
2 [ u2

,x + v2
,x + w2

,x ]

Eyy = v,y + 1
2 [ u2

,y + v2
,y + w2

,y ]

Ezz = w,z + 1
2 [ u2

,z + v2
,z + w2

,z ]

Exy = 1
2 [u,y + v,x] + 1

2 [ u,xu,y + v,xv,y + w,xw,y ] = Eyx

Eyz = 1
2 [v,z + w,y] + 1

2 [ u,yu,z + v,yv,z + w,yw,z ] = Ezy

Ezx = 1
2 [w,x + u,z] + 1

2 [ u,zu,x + v,zv,x + w,zw,x ] = Exz

(2.2.9)

By its very definition, the matrix of the Green Lagrange strain components is again
symmetric. It is also easy to show that in the limit of small deformation, when products
of derivatives are really small as compared to the derivatives themselves and thus
negligible, the Green Lagrange strains E correspond to the small strains ε of equqations
(1.2.6) and (1.2.7). For example, at small strains Exy = 1/2 [ u,y + v,x ] + 1/2 [ u,xu,y +
v,xv,y + w,xw,y ] ≈ 1/2 [u,y + v,x] = εxy.
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2 Introduction to mechanics

2.2.3 Constitutive equations: The stress-strain relation

How are strain and stress related? The equations that relate stress and strain are the
constitutive equations. Unlike the kinematic equations and the equilibrium equations,
the constitutive equations are not general. They are they are material specific equa-
tions that complement the set of governing equations and are therefore sometimes just
referred to as material model. The three dimensional generalization of the σ = E ε law
introduced in the motivation section is Hooke’s law for isotropic, linear elastic solids.

σxx = E
1−ν2 [ εxx + ν εyy + ν εzz ] σxy = E

1+ν εxy = σyx

σyy = E
1−ν2 [ εyy + ν εxx + ν εzz ] σyz = E

1+ν εyz = σzy

σzz = E
1−ν2 [ εzz + ν εxx + ν εyy ] σzx = E

1+ν εzx = σxz

(2.2.10)

Inversely, Hooke’s law could be rephrased to gain an expression for the strains in terms
of given stresses.

εxx = 1
E [ σxx − ν σyy − ν σzz ] εxy = 1+ν

E σyx = εxy

εyy = 1
E [ σyy − ν σxx − ν σzz ] εyz = 1+ν

E σyz = εyz

εzz = 1
E [ σzz − ν σxx − ν σyy ] εzx = 1+ν

E σzx = εxz

(2.2.11)

In contrast to the one dimensional truss model, we have now introduced two con-
stants, the material parameters E and ν, Young’s modulus and Poisson’s ratio. We
have already seen the interpretation of Young’s modulus, it basically tells us the stress
that is generated by stretching a material at a particular strain. Its unit is similar to the
one of stresses, i.e., force per length squared. As you can guess from the above equa-
tions, Poisson’s ratio is unitless. It is a measure of how much a material contracts in
the lateral direction when stretched along one axis. Unlike Young’s modulus, Poisson’s
ratio is limited to the regime −1.0 ≤ ν ≤ 0.5.

2.2.4 Equilibrium: The stress vs force relation

What is stress? The equations that relate external or applied forces to internal forces
are the equilibrium equations. Like the kinematic equations, they are general equations
that are valid for any solid, independent of the material it is made of. Unfortunately,
equilibrium cannot be expressed in terms of stresses right away, it has to be phrased
in terms of forces. Therefore, it is important to first determine the forces that act on a
particular cross section. Just like in the one dimensional example, but now a bit more
cumbersome, these forces can be obtained by intergrating the stresses over the total
area which they are acting on. The resulting forces are therefore often referred to as
stress resultants. Each of the nine stress resultants is then related to one of the stress
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2 Introduction to mechanics

components introduced in equation (1.2.10).

Nxx =
∫∫

σxx dydz Nxy =
∫∫

σxy dydz Nxz =
∫∫

σxz dydz

Nyx =
∫∫

σyx dxdz Nyy =
∫∫

σyy dxdz Nyz =
∫∫

σyz dxdz

Nzx =
∫∫

σzx dxdy Nzy =
∫∫

σzy dxdy Nzz =
∫∫

σzz dxdy

(2.2.12)

Again, the first index refers to the direction of the cross section normal, the second
index refers to the direction of the stress resultant. Similar to the one dimensional

Nxx
Nxy

Nxz

Nzz + Nzz,zdz
Nzy + Nzy,zdz

Nzx + Nzx,zdz

Nyz + Nyz,ydy
Nyy + Nyy,ydy

Nyx + Nyx,ydy

Nzz

Nzx

Nzy

Nyx
Nyy

Nyz

Nxx + Nxx,xdx

Nxz+ Nxz,x dx
Nxy+ Nxy,x dx

Figure 2.2: Infinitesimal three dimensional element with corresponding stress resultants N

problem, we now look at an infinitesimal element as displayed in figure 5.3. We sum
all the forces in x, y and z direction to obtain the three equilibrium equations of a three
dimensional solid.

∑ fx
.= 0 [−Nxx + Nxx + Nxx,x dx ]

+ [−Nyx + Nyx + Nyx,y dy ]

+ [−Nzx + Nzx + Nzx,z dz ] + fx = 0

∑ fy
.= 0 [−Nyy + Nyy + Nyy,y dy ]

+ [−Nxy + Nyy + Nxy,x dx ]

+ [−Nzy + Nzy + Nzy,z dz ] + fy = 0

∑ fz
.= 0 [−Nzz + Nzz + Nzz,z dz ]

+ [−Nxz + Nxz + Nxz,x dx ]

+ [−Nyz + Nyz + Nyz,y dy ] + fz = 0

(2.2.13)

These equations can be slightly rearranged. Obviously, the first two terms of each row
cancel. The remaining terms can be expressed in terms of the stress compontents σ and
divided by the volume dx dy dz. The equilibrium equations then take the following
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2 Introduction to mechanics

remarkably simple format.

∑ fx
.= 0 σxx,x + σyx,y + σzx,z + fx = 0

∑ fy
.= 0 σyy,y + σxy,x + σzy,z + fy = 0

∑ fz
.= 0 σzz,z + σxz,x + σyz,y + fz = 0

(2.2.14)

In continuum mechanics, these three equations are typically expressed in one single
compact vector equation by making use of the index notation σij,i + fi = 0i or by intro-
ducing the divergence operator div(◦) = (◦)ij,j such that in compact tensor notation
equilibrium simply reads div(σt) + f = 0.
To review what we just did, let us summarize the process that is common in contin-
uum mechanics modeling. If the main goal was the characterization of the mechan-
ical behavior of the cell, we would start with the two general equations, kinematics
(1.2.6,1.2.7) or, in the context of large deformations (1.2.9) and equilibrium (1.2.14).
Then, we would postulate a particular class of material behavior, here we have as-
sumed the solid to be linear elastic. We identify an appropriate constitutive equation
(1.2.10), here we have chosen Hooke’s law. It introduces two material parameters,
Young’s modulus E and Poisson’s ratio ν. Through experimental investigation, we can
then determine the values of these parameters, identify ranges of valitidy, verify and
validate the model and hopefully make useful predictions.

2.2.5 Structural elements

The derived set of equations is rather general and, as you might agree, somewhat com-
plicated. In some cases, it can be reduced significantly by making particular assump-
tions concerning the dimensions of the solid of interest. Additional simplifications can
be made once we know the relevant loading situation. Based on the following assump-
tions for the width w, the height h and the length l of the structure, we will distinguish
six different structural elements with a reduced set of governing equations.

dimension geometry loading deformation gov eqn

truss 1d straight w, h� l axial tension 2nd order
beam 1d straight w, h� l transverse bending 4th order

wall 2d flat h� w, l in plane tension/shear 2nd order
plate 2d flat h� w, l transverse bending 4th order

membrane 3d curved h� w, l in plane tension/shear 2nd order
shell 3d curved h� w, l transverse bending 4th order

Table 2.1: Classification of structural elements based on dimension, geometry and loading

Typical examples of trusses or beams would be biopolymers such as microtubules,
actin and intermediate filaments. A typical example of a membrane or shell is the lipid
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2 Introduction to mechanics

bilayer or the cell membrane. As you can see from the table, based on different assump-
tions of geometry and loading, the structure will either be tension/shear dominated or
bending dominated, or, possibly a combination of both. We will see later that axial or
in plane loading, stretch, tension and shear result in a second order partial differen-
tial equation relating the in plane deformation to the applied force. Transverse or out
of plane loading and bending deformation result in a fourth order partial differential
equation relating the out of plane deformation to the applied force.
For structural elements, it proves convenient to combine the information about the
material properties, e.g., Young’s modulus and Poisson’s ratio, with information about
the cross section geometry, e.g. the cross section area or the moment of inertia. Typ-
ical examples would be the axial stiffness, the bending stiffness, or the area compres-
sion modulus. We will address these individually in the sections on the mechanics of
biopolymers and biomembranes.

2.3 Summary

2.4 Problems

Problem 2.1 - Green Lagrange strains

Try to recapitulate, at least for one normal and one shear term, how the individual
components of the Green Lagrange strains (1.2.9) can be derived with the help of the
definition Eij = 1

2 [ FkiFkj − δij ] or rather Eij = 1
2 [ FxiFxj + FyiFyj + FziFzj − δij ]. Write

out the six equations for i, j = x, y, z and make use of the definition of the deformation
gradient (1.2.8).

Exx = 1
2 [ FxxFxx + FyxFyx + FzxFzx − 1 ]

Eyy = 1
2 [ FxyFxy + FyyFyy + FzyFzy − 1 ]

Ezz = 1
2 [ FxzFxz + FyzFyz + FzzFzz − 1 ]

Exy = 1
2 [ FxxFxy + FyxFyy + FzxFzy − 1 ] = Eyx

Eyz = 1
2 [ FxyFxz + FyyFyz + FzyFzz − 1 ] = Ezy

Ezx = 1
2 [ FxzFxx + FyzFyx + FzzFzx − 1 ] = Exz
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