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06 - kinematic equations




continuuMm mMmechancis

continuum mechanics [kon'tmn.ju.om mo'keen.iks] is a
branch of physics (specifically mechanics)
that deals with continuous matter. the fact
that matter 1s made of atoms and that it
commonly has some sort of heterogeneous
microstructure 1s 1gnored 1n the simplify-
1ng approximation that physical quantities,
such as energy and momentum, can be handled
in the infinitesimal limit. differential
equations can thus be employed 1n solving
problems 1n continuum mechanics.
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continuuMm Mmechanics

continuum mechanics [kon'tm.ju.om mo'kaen.iks| is
the branch of mechanics concerned with the
stress 1n solids, ligquids and gases and the
deformation or flow of these materials. the
adjective continuous refers to the simpli-
fying concept underlying the analysis: we
disregard the molecular structure of matter
and picture 1t as being without gaps or
empty spaces. we suppose that all the
mathematical functions entering the theory
are continuous functions. this hypothetical
continuous material we call a contilnuum.
Malvern ,Introduction to the mechanics of a continuous medium” [1969]




continuuMm Mmechanics

continuum hypothesis |kon'tm.ju.om har'pa:f.o.ss]
we assume that the characteristic length
scale of the microstructure 1s much smaller
than the characteristic length scale of the
overall problem, such that the properties
at each poilint can be understood as averages
over a characteristic length scale

lmicro < Zaverg < lconti
example: biomechanics

lmicro _ lcells ~ 10Mm

lconti — ltissue ~ 10cm
the continuum hypothesis can be applied when analyzing tissues




the potato equations

e kKinematic equations - what's strain” ¢ — Al
general equations that characterize the deformation
of a physical body without studying its physical cause

e palance equations - what's stress”? o=7

general eqguations that characterize the cause of
motion of any body

e constitutive equations - how are they related? o = FEe

material speciic eguations that complement the set
of governing equations




the potato equations

e kinematic equations - why not € = 5t ?
NhomMogeneous deformation » Non-constant
finite deformation » non-linear F =Vxp
inelastic deformation » growtn tensor F=F. F,

e balance equations - why not @ = 5?2  Div(P) + pby = 0
equiliorium In deformed configuration » multiple stress measures

e constitutive eguations - why not o = Ee 7/

finite deformation » non-linear P =P(F)
inelastic deformation » interal variables P =P F, F,)




Kinematic equations

kinematic equations |kmo'matik r'kwer.zons] de-
scribe the motion of objects without the
consideration of the masses or forces that
bring about the motion. the basis of kine-
matics 1s the choice of coordinates. the
lst and 2nd time derivatives of the posi-
tion coordinates give the velocities and
accelerations. the difference 1n placement
between the beginning and the final state
of two polnts 1n a body expresses the nu-
merical value of strain. strain expresses :
itself as a change in size and/or shape.

kinematic equations



Kinematic equations

kinematics [kmo'metiks] is the study of motion
per se, regardless of the forces causing
1t. the primitive concepts concerned are
position, time and body, the latter
abstracting into mathematical terms
intuilitive 1deas about aggregations of
matter capable of motion and deformation.

Chadwick ,Continuum mechanics" [19/76]
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ootato - Kinematics
By B,

e nonlinear deformation map ¢
r=@(X,t) with @ : By xR — B;

e spatial denvative of ¢ - deformation gradient
0X t fixed %
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ootato - Kinematics

Bo

e transformation of line elements - deformation gradient  F3;

. Oy
d{L‘i — F;Zj d){i7 With Ej X TBO — TBt b = 3—)(3 bed

e Uniaxial tension (incompressible), simple shear, rotation

| o O1 0 ) 1~0 cos(#) sin(6) 0
Fih=10a20 | F;"=]010 F;;pt — | —sin(f) cos(f) 0
0 0a2 001 0 01
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potato - kKinematics of fintte growtn
B

e transformation of volume elements - determinant of F°
d% = dX1 . [dXQ X ng] d‘[c = dwl . [dwg X dwg]
= det(|d®x,, das, dxs])

== det([Xm, dXQ, ng]) == det(F) det([Xm, dXQ, ng])
e changes in volume - determinant of deformation tensor J
dVy = JdV J = det(F)

kinematic equations 1



ootato - Kinematics

e temporal derivative of ¥ - velocity (material tme derivative)

_ _ Oy .
’U—DtS"—atLﬁxed with v : By x R — R®
e temporal derivative of v - acceleration
a=D,v= v _ 82_90 - 3
=P = 5] e 2 | e Wwth a: By xR — R
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