04 - tensor calculus tensor analysis

tensor analysis - frechet derivative

- consider smooth differentiable scalar field Φ with
$\begin{array}{lcccc}\text { scalar argument } & \Phi: & \mathcal{R} & \rightarrow \mathcal{R} ; & \Phi(x)=\alpha \\ \text { vector argument } & \Phi: & \mathcal{R}^{3} & \rightarrow \mathcal{R} ; & \Phi(\boldsymbol{x})=\alpha \\ \text { tensor argument } & \Phi: & \mathcal{R}^{3} \times \mathcal{R}^{3} \rightarrow \mathcal{R} ; & \Phi(\boldsymbol{X})=\alpha\end{array}$
- frechet derivative (tensor notation)
scalar argument $\mathrm{D} \Phi(x)=\frac{\partial \Phi(x)}{\partial x}=\partial_{x} \Phi(x)$
vector argument $\mathrm{D} \Phi(\boldsymbol{x})=\frac{\partial \Phi(\boldsymbol{x})}{\partial \boldsymbol{x}}=\partial_{\boldsymbol{x}} \Phi(\boldsymbol{x})$
tensor argument $\mathrm{D} \Phi(\boldsymbol{X})=\frac{\partial \Phi(\boldsymbol{X})}{\partial \boldsymbol{X}}=\partial_{\boldsymbol{X}} \Phi(\boldsymbol{X})$

tensor calculus

tensor analysis - gateaux derivative

- consider smooth differentiable scalar field Φ with

$$
\begin{array}{lrlr}
\text { scalar argument } \Phi: & \mathcal{R} & \rightarrow \mathcal{R} ; & \Phi(x)=\alpha \\
\text { vector argument } \Phi: & \mathcal{R}^{3} & \rightarrow \mathcal{R} ; & \Phi(\boldsymbol{x})=\alpha \\
\text { tensor argument } \Phi: & \mathcal{R}^{3} \times \mathcal{R}^{3} \rightarrow \mathcal{R} ; & \Phi(\boldsymbol{X})=\alpha
\end{array}
$$

- gateaux derivative, i. e. frechet wit direction (tensor notation) scalar argument $\mathrm{D} \Phi(x) \quad u=\left.\frac{\mathrm{d}}{\mathrm{d} \epsilon} \Phi(x+\epsilon u)\right|_{\epsilon=0} \quad \forall u \in \mathcal{R}$ vector argument $\mathrm{D} \Phi(\boldsymbol{x}) \cdot \boldsymbol{u}=\left.\frac{\mathrm{d}}{\mathrm{d} \epsilon} \Phi(\boldsymbol{x}+\epsilon \boldsymbol{u})\right|_{\epsilon=0} \quad \forall \boldsymbol{u} \in \mathcal{R}^{3}$ tensor argument $\mathrm{D} \Phi(\boldsymbol{X}): \boldsymbol{U}=\left.\frac{\mathrm{d}}{\mathrm{d} \epsilon} \Phi(\boldsymbol{X}+\epsilon \boldsymbol{U})\right|_{\epsilon=0} \quad \forall \boldsymbol{U} \in \mathcal{R}^{3}$

tensor calculus

tensor analysis - gradient

- consider scalar- and vector field in domain $\mathcal{B} \in \mathcal{R}^{3}$

$$
\begin{array}{ll}
f: \mathcal{B} \rightarrow \mathcal{R} & f: x \rightarrow f(x) \\
f: \mathcal{B} \rightarrow \mathcal{R}^{3} & f: x \rightarrow f
\end{array}
$$

- gradient of scalar- and vector field

$$
\nabla f(x)=\left[\begin{array}{l}
f_{1} \\
f_{2} \\
f_{, 3}
\end{array}\right]
$$

$$
\begin{array}{ll}
\nabla f(\boldsymbol{x})=\frac{\partial f(\boldsymbol{x})}{\partial x_{i}}=f_{i, i}(\boldsymbol{x}) \boldsymbol{e}_{i} & \nabla f(\boldsymbol{x})= \\
\nabla \boldsymbol{f}(\boldsymbol{x})=\frac{\partial f_{i}(\boldsymbol{x})}{\partial x_{j}}=f_{i, j}(\boldsymbol{x}) \boldsymbol{e}_{i} \otimes \boldsymbol{e}_{j} & \nabla \boldsymbol{f}(\boldsymbol{x})=
\end{array}
$$

$$
\left[\begin{array}{lll}
f_{1,1} & f_{1,2} & f_{1,3} \\
f_{2,1} & f_{2,2} & f_{2,3} \\
f_{3,1} & f_{3,2} & f_{3} \text { 表 }
\end{array}\right]
$$

renders vector- and 2nd order tensor field

tensor analysis - divergence

- consider vector- and 2nd order tensor field in domain \mathcal{B} $\boldsymbol{f}: \mathcal{B} \rightarrow \mathcal{R}^{3} \quad \boldsymbol{f}: \boldsymbol{x} \rightarrow \boldsymbol{f} \quad(\boldsymbol{x})$ $\boldsymbol{F}: \mathcal{B} \rightarrow \mathcal{R}^{3} \otimes \mathcal{R}^{3} \quad \boldsymbol{F}: \boldsymbol{x} \rightarrow \boldsymbol{F}(\boldsymbol{x})$
- divergence of vector- and 2nd order tensor field $\operatorname{div}(\boldsymbol{f}(\boldsymbol{x}))=\operatorname{tr}(\nabla \boldsymbol{f}(\boldsymbol{x}))=\nabla \boldsymbol{f}(\boldsymbol{x}): \boldsymbol{I}$ $\operatorname{div}(\boldsymbol{f}(\boldsymbol{x}))=f_{i, i}(\boldsymbol{x})=f_{1,1}+f_{2,2}+f_{3,3}$
$\operatorname{div}(\boldsymbol{F}(\boldsymbol{x}))=\operatorname{tr}(\nabla \boldsymbol{F}(\boldsymbol{x}))=\nabla \boldsymbol{F}(\boldsymbol{x}): \boldsymbol{I}$
$\operatorname{div}(\boldsymbol{F}(\boldsymbol{x}))=F_{i j, j}(\boldsymbol{x})=\left[\begin{array}{l}F_{11,1}+F_{12,2}+F_{13,3} \\ F_{21,1}+F_{22,2}+F_{23,3} \\ F_{31,1}+F_{32,2}+F_{33,3}\end{array}\right]$
renders scalar- and vector field

tensor analysis - laplace operator

- consider scalar- and vector field in domain $\mathcal{B} \in \mathcal{R}^{3}$

$$
\begin{array}{lll}
f: \mathcal{B} \rightarrow \mathcal{R} & f: x \rightarrow f(\boldsymbol{x}) \\
\boldsymbol{f}: \mathcal{B} \rightarrow \mathcal{R}^{3} & f: x \rightarrow f & f(\boldsymbol{x})
\end{array}
$$

- laplace operator acting on scalar- and vector field
$\Delta f(\boldsymbol{x})=\operatorname{div}(\nabla(f(\boldsymbol{x}))) \quad \Delta f(\boldsymbol{x})=f_{, i i}=f_{, 11}+f_{, 22}+f_{, 33}$
$\Delta \boldsymbol{f}(\boldsymbol{x})=\operatorname{div}(\nabla(\boldsymbol{f}(\boldsymbol{x}))) \quad \Delta \boldsymbol{f}(\boldsymbol{x})=f_{i, j j}=\left[\begin{array}{c}f_{1,11}+f_{1,22}+f_{1,33} \\ f_{2,11}+f_{2,22}+f_{2,33} \\ f_{3,11}+f_{3,22}+f_{3,1}\end{array}\right]$
renders scalar- and vector field

tensor calculus

tensor analysis - transformation formulae

- consider scalar, vector and 2 nd order tensor field on $\mathcal{B} \in \mathcal{R}^{3}$

$$
\begin{array}{ll}
\alpha: \mathcal{B} \rightarrow \mathcal{R} & \alpha: \boldsymbol{x} \rightarrow \alpha(\boldsymbol{x}) \\
\boldsymbol{u}: \mathcal{B} \rightarrow \mathcal{R}^{3} & \boldsymbol{u}: \boldsymbol{x} \rightarrow \boldsymbol{u}(\boldsymbol{x}) \\
\boldsymbol{v}: \mathcal{B} \rightarrow \mathcal{R}^{3} & \boldsymbol{v}: \boldsymbol{x} \rightarrow \boldsymbol{v}(\boldsymbol{x}) \\
\boldsymbol{A}: \mathcal{B} \rightarrow \mathcal{R}^{3} \otimes \mathcal{R}^{3} & \boldsymbol{A}: \boldsymbol{x} \rightarrow \boldsymbol{A}(\boldsymbol{x})
\end{array}
$$

- useful transformation formulae (tensor notation)

$$
\nabla(\alpha \boldsymbol{u})=\boldsymbol{u} \otimes \nabla \alpha+\alpha \nabla \boldsymbol{u}
$$

$$
\nabla(\boldsymbol{u} \cdot \boldsymbol{v})=\boldsymbol{u} \cdot \nabla \boldsymbol{v}+\boldsymbol{v} \cdot \nabla \boldsymbol{u}
$$

$$
\operatorname{div}(\alpha \boldsymbol{u})=\alpha \operatorname{div}(\boldsymbol{u})+\boldsymbol{u} \cdot \nabla \alpha
$$

$$
\operatorname{div}(\alpha \boldsymbol{A})=\alpha \operatorname{div}(\boldsymbol{A})+\boldsymbol{A} \cdot \nabla \alpha
$$

$$
\operatorname{div}(\boldsymbol{u} \cdot \boldsymbol{A})=\boldsymbol{u} \cdot \operatorname{div}(\boldsymbol{A})+\boldsymbol{A}: \nabla \boldsymbol{u}
$$

$$
\operatorname{div}(\boldsymbol{u} \otimes \boldsymbol{v})=\boldsymbol{u} \operatorname{div}(\boldsymbol{v})+\boldsymbol{v} \cdot \nabla \boldsymbol{u}^{\mathrm{t}}
$$

tensor analysis - transformation formulae

- consider scalar, vector and 2 nd order tensor field on $\mathcal{B} \in \mathcal{R}^{3}$

$$
\begin{array}{lllll}
\alpha: & \mathcal{B} \rightarrow \mathcal{R} & \alpha: & x_{k} \rightarrow \alpha & \left(x_{k}\right) \\
u_{i}: & \mathcal{B} \rightarrow \mathcal{R}^{3} & u_{i}: & x_{k} \rightarrow u_{i} & \left(x_{k}\right) \\
v_{i}: & \mathcal{B} \rightarrow \mathcal{R}^{3} & v_{i}: & x_{k} \rightarrow v_{i} & \left(x_{k}\right) \\
A_{i j}: & \mathcal{B} \rightarrow \mathcal{R}^{3} \otimes \mathcal{R}^{3} & A_{i j}: & x_{k} \rightarrow A_{i j} & \left(x_{k}\right)
\end{array}
$$

- useful transformation formulae (index notation)

$$
\begin{aligned}
& \left(\alpha u_{i}\right)_{, j}=u_{i} \alpha_{, j}+\alpha u_{i, j} \\
& \left(u_{i} v_{i}\right)_{, j}=u_{i} v_{i, j}+v_{i} u_{i, j} \\
& \left(\alpha u_{i}\right)_{, i}=\alpha u_{i, i}+u_{i} \alpha_{, i} \\
& \left(\alpha A_{i j}\right)_{, j}=\alpha A_{i j, j}+A_{i j} \alpha_{, j} \\
& \left(u_{i} A_{i j}\right)_{, j}=u_{i} A_{i j, j}+A_{i j} u_{i, j} \\
& \left(u_{i} v_{j}\right)_{, j}=u_{i} v_{j, j}+v_{j} u_{i, j}
\end{aligned}
$$

tensor analysis - integral theorems

- consider scalar, vector and 2 nd order tensor field on $\mathcal{B} \in \mathcal{R}^{3}$

$$
\begin{array}{ll}
\alpha: \mathcal{B} \rightarrow \mathcal{R} & \alpha: \boldsymbol{x} \rightarrow \alpha(\boldsymbol{x}) \\
\boldsymbol{u}: \mathcal{B} \rightarrow \mathcal{R}^{3} & \boldsymbol{u}: \boldsymbol{x} \rightarrow \boldsymbol{u}(\boldsymbol{x}) \\
\boldsymbol{A}: \mathcal{B} \rightarrow \mathcal{R}^{3} \otimes \mathcal{R}^{3} & \boldsymbol{A}: \boldsymbol{x} \rightarrow \boldsymbol{A}(\boldsymbol{x})
\end{array}
$$

- integral theorems (tensor notation)

tensor calculus

tensor analysis - integral theorems

- consider scalar, vector and 2 nd order tensor field on $\mathcal{B} \in \mathcal{R}^{3}$

$$
\begin{array}{lllll}
\alpha: & \mathcal{B} \rightarrow \mathcal{R} & \alpha: & x_{k} \rightarrow \alpha & \left(x_{k}\right) \\
u_{i}: & \mathcal{B} \rightarrow \mathcal{R}^{3} & u_{i}: & x_{k} \rightarrow u_{i} & \left(x_{k}\right) \\
A_{i j}: & \mathcal{B} \rightarrow \mathcal{R}^{3} \otimes \mathcal{R}^{3} & A_{i j}: & x_{k} \rightarrow A_{i j}\left(x_{k}\right)
\end{array}
$$

- integral theorems (tensor notation)

n				
$\bullet \mathcal{B}$				
$\bullet \mathcal{B} \in \mathcal{B}$	$\int_{\partial \mathcal{B}}$	αn_{i}	$\mathrm{~d} A=\int_{\mathcal{B}}$	$\alpha_{i, i} \mathrm{~d} V$

tensor calculus

voigt / matrix vector notation

- strain tensors as vectors in voigt notation

$$
\begin{aligned}
& E_{i j}=\left[\begin{array}{lll}
E_{11} & E_{12} & E_{31} \\
E_{12} & E_{22} & E_{23} \\
E_{31} & E_{23} & E_{33}
\end{array}\right] \\
& E^{\mathrm{voigt}}
\end{aligned}=\left[E_{11}, E_{22}, E_{33}, 2 E_{12}, 2 E_{23}, 2 E_{31}\right]^{\mathrm{t}} .
$$

- stress tensors as vectors in voigt notation

$$
\begin{aligned}
& S_{i j}=\left[\begin{array}{lll}
S_{11} & S_{12} & S_{31} \\
S_{12} & S_{22} & S_{23} \\
S_{31} & S_{23} & S_{33}
\end{array}\right] \\
& S^{\text {voigt }} \\
& =\left[S_{11}, S_{22}, S_{33}, S_{12}, S_{23}, S_{31}\right]^{\mathrm{t}}
\end{aligned}
$$

- why are strain \& stress different? check energy expressic

$$
\psi=\frac{1}{2} \boldsymbol{E}: \boldsymbol{S} \quad \psi=\frac{1}{2} \boldsymbol{E}^{\text {voigt }}: \boldsymbol{S}^{\text {voigt }}
$$

tensor calculus

voigt / matrix vector notation

- fourth order material operators as matrix in voigt notation

$$
C^{\text {voigt }}=\left[\begin{array}{llllll}
C_{1111} & C_{1122} & C_{1133} & C_{1112} & C_{1123} & C_{1131} \\
C_{2211} & C_{2222} & C_{2233} & C_{2212} & C_{2223} & C_{2231} \\
C_{3311} & C_{3322} & C_{3333} & C_{3312} & C_{3323} & C_{3331} \\
C_{1211} & C_{1222} & C_{1233} & C_{1212} & C_{1223} & C_{1231} \\
C_{2311} & C_{2322} & C_{2333} & C_{2312} & C_{2323} & C_{2331} \\
C_{3111} & C_{3122} & C_{3133} & C_{3112} & C_{3123} & C_{3331}
\end{array}\right]
$$

- why are strain \& stress different? check these expression

$$
\boldsymbol{S}=\mathbf{C}: \boldsymbol{E} \quad \boldsymbol{S}^{\text {voigt }}=\boldsymbol{C}^{\text {voigt }} \cdot \boldsymbol{E}^{\text {voigt }}
$$

