
ME338A
CONTINUUM MECHANICS

lecture notes 16

thursday, march 4th, 2010



5 Introduction to Nonlinear Continuum Mechanics

5.2 Constitutive Theory

5.2.1 Cauchy’s Stress Theorem and Fundamental Stress Measures

Consider a part PB ⊂ B cut off from the reference body B
and its spatial counterpart PS ⊂ S closed by the respective
boundaries ∂PB and ∂PS .

eplacements

X x

B S

PB PS∂PB ∂PS

dA

da

F

F−T

T̃
tN

n

In the deformed configuration, we introduce the stress vector
t that acts on the surface element da of ∂PS and represents
the force action of the rest of the body at the vicinity PS \ S
on ∂PS . The Cauchy stress theorem states that the spatial trac-
tion vector t ∈ Tx S linearly depends on the spatial normal
n ∈ T ∗

x S of the surface ∂PS , i.e.

t(x, t; n) := σ(x, t) · n , (5.2.1)

through the Cauchy (true) stress tensor σ. Cauchy’s stress
theorem can be proven based on the force equilibrium on
a tetrahedron. In the geometrical framework outlined so far,
the Cauchy stress tensor can be understood as a contravari-
ant mapping transforming normals n ∈ T ∗

x S onto tangent
vectors t ∈ Tx S

σ :=







T ∗
x S → Tx S ,

n &→ t = σ · n .
(5.2.2)
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5 Introduction to Nonlinear Continuum Mechanics

Another spatial stress measure, the Kirchhoff stress tensor, also
known as the weighted Cauchy stress tensor, is defined as

τ := Jσ (5.2.3)

and widely used in the spatial description of stress power
terms in the reference volume. Owing to the scalar scaling
by the Jacobian J, the Kirchhoff stresses retain the geometri-
cal transformation characteristics of the Cauchy stress.

Now let us consider another spatial traction vector T ∈ Tx S
defined through the force equality T dA := t da by scaling
the spatial force term (t da) through the reference area el-
ement dA. Based on this definition, we introduce the first
Piola-Kirchhoff stress tensor by the reference Cauchy theorem
T := P · N leading to P · N dA = σ · n da. Using the area
map nda = JF−T · NdA, we obtain the relation P = τ · F−T

between the first Piola-Kirchhoff stress tensor and the spa-
tial stress measures. Notice that P is a two-point tensor pos-
sessing the geometrical mapping properties

P :=







T ∗
XB → Tx S ,

N &→ T = P · N .
(5.2.4)

The transformation (!) = J(•)F−T devised in obtaining the
first Piola-Kirchhoff stress tensor from the Cauchy stress ten-
sor is called the Piola transformation. It is widely employed in
transforming the objects acting on a spatial surface onto their
material counterparts. The immediate outcome of the Piola
transformation is the Piola Identity

J div(•) = Div(!) = Div(J(•)F−T) (5.2.5)

that also implies the equality Div(JF−T) = 0.
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5 Introduction to Nonlinear Continuum Mechanics

The third fundamental stress measure, the second Piola-Kirchhoff
stress tensor S, is then defined by T̃ := S · N yielding

S :=







T ∗
XB → TXB ,

N &→ T̃ = S · N .
(5.2.6)

Incorporating the definitions (5.2.2)–(5.2.4) in (5.2.6), we can
express the second Piola-Kirchhoff stress tensor in terms of
the other stress tensors

S := ϕ∗(P) = F−1 · P , SAB = (F−1)AaPaB ,

S := ϕ∗(τ) = F−1 · τ · F−T , SAB = (F−1)Aaτab(F−1)Bb

as the pull-back of the contravariant two-point and spatial
objects. Apparently the reverse push-forward relations do
also hold for the spatial stress tensors

τ = Jσ = ϕ∗(P) = P · FT and τ = ϕ∗(S) = F · S · FT ,

X

X

x

x

F

F−T

TXB

Tx S

T ∗
XB

T ∗
x S

S P τ = Jσ

t

N

T̃

n
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5 Introduction to Nonlinear Continuum Mechanics

5.2.2 Closure Problem

The fundamental balance equations are summarized as

Balance of Spatial Material

Mass ρ̇t + ρtdiv(v) = 0 ρ̇0 = 0

Linear M. ρta = div(σ) + ρtb ρ0a = Div(P) + ρ0b

Angular M. σ = σ
T, τ = τ

T S = ST

P · FT = F · PT F−1 · P = PT · F−T

Energy ρt
di
dt = σ : d − div q + Rt ρ0

di
dt = P : Ḟ − Div Q + R0

where ρ0 = Jρt, R0 = JRt and Q = Jq · F−T.

The number of equations provided by these balance laws
and the number of unknowns can be identified as

Balance of # Unknown #

Mass 1 density ρt 1

Linear M. 3 Placement ϕt(X) 3

Angular M. 3 Stresses σ 9

Energy 1 Temperature θ 1

Heat Flux q 3

Σ 8 Σ 17

where the volume-specific body forces b and the heat source
Rt are assumed to be given. Comparison of the number
of unknowns with the number of equations indicates that
nine additional equations are needed to solve the problem.
These additional equations are called the constitutive equa-
tions which describe the stresses σ̂ = σ̂

T (six equations), and
the heat flux q̂ (three equations).
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5 Introduction to Nonlinear Continuum Mechanics

In common practice the placement ϕt(X) and the absolute
temperature θ are considered as the primary unknowns that
are solved from the balance of linear momentum and the
balance of energy equations.

It is important to notice that the stress power W := P : Ḟ

per unit reference volume appearing in the balance of en-
ergy equation can also be expressed in terms of other stress
measures by using the push-forward and pull-back relations
among the fundamental stress tensors and the rate of defor-
mation tensors.

W := P : Ḟ = τ : d = S : Ė .

The alternative representations of the reference stress power
W manifest the distinct work conjugate couples

(P; Ḟ) , (τ; d) , (S; Ė) .

5.2.3 Methodology of Coleman and Gurtin

Let us focus on a problem of thermoelasticity for a homoge-
neous material, for which the local dissipation Dloc vanishes
identically. Being consistent with the principle of locality, we
assume that the free energy ψ depend upon field variables
defined in the neighborhood of the material point X

ψ = ψ̂(F, θ, G) (5.2.7)

where G := ∇Xθ denotes the material gradient of the tem-
perature field. Based on this assumption, we can substitute
the time derivative of the free energy

ψ̇ = ∂Fψ : Ḟ + ∂θψ : θ̇ + ∂Gψ : Ġ
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5 Introduction to Nonlinear Continuum Mechanics

in the Clausius-Planck inequality

JDloc := (P − ∂Fψ) : Ḟ − (η + ∂θψ) θ̇ − ∂Gψ · Ġ = 0 . (5.2.8)

Following the celebrated reasoning of Coleman & Noll (1963)
and Coleman & Gurtin (1967) within the framework of ther-
modynamics with internal variables, we contend that the
thermodynamic restriction should be fulfilled for an arbi-
trary rate of the deformation gradient, temperature and tem-
perature gradient. Therefore, (5.2.8) implies a particular form
of constitutive equations such that

P := ∂Fψ , η := −∂θψ and ∂Gψ = 0 . (5.2.9)

The first two equations of (5.2.9) state that the free energy
acts as a potential for the stresses and the entropy while
(5.2.9)3 implies that the free energy does not depend on the
temperature gradient G, i.e. ψ = ψ̂(F, θ).

5.2.4 Principle of Material Frame Invariance

We consider a rigid body motion ξ(x, t) : S ×R+ −→ R3

superimposed onto a non-linear motion ϕt(X), i.e.

ξ(x, t) := c(t) + Q(t) · x

where Q is a proper orthogonal tensor. This definition yields

ϕ̃(X, t) := ξ ◦ ϕ = c(t) + Q(t) · ϕ(X, t) .

Under this superimposed motion, we observe the following
transformation relations for:
• Fundamental Maps:

F̃ := Q · F, F̃
−T

= Q · F−T, J̃ = J
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X
x

x̃

B S

S̃

ϕt(X)

ϕ̃t(X) = ξt ◦ ϕt ξt(x)

F

F̃ Q

• Lagrangian Strain Measures:

C̃ = F̃
T · F̃ = FT · QT · Q · F = C

• Eulerian Strain Measures:

b̃ = F̃ · F̃
T

= Q · FT · F · QT = Q · b · QT

c̃ = b̃
−1

= Q · c · QT

We call these type of transformation operations objective trans-
formation of second order tensors. It is important to note that
there also exist spatial tensors that do not fulfill the objec-
tive transformation rules, such as the spatial velocity v, the
spatial velocity gradient l, to name a few.

One of the fundamental principles of continuum mechanics
is the principle of material frame invariance that requires the
invariance of the energy stored under rigid body rotations
superimposed on the current spatial configuration.
Therefore, we locally demand

ψ(F, θ) = ψ(F̃, θ) (5.2.10)
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5 Introduction to Nonlinear Continuum Mechanics

Since the right Cauchy-Green tensor C := FT · F = F̃
T · F̃

satisfies satisfies this condition, a storage function ψ̂ con-
structed in terms of C = FT · F is a priori objective and the
form ψ̂(C, θ) = ψ̂(FTF, θ) represents its reduced form.

ψ̂(C, θ) = ψ̂(FT·F, θ) . (5.2.11)

Based on this restriction, we can rewrite the term

(P − ∂Fψ) : Ḟ as (S − 2∂Cψ̂) : 1
2 Ċ

due to the equivalent stress power expressions. This leads
us to the functional definition of the second Piola-Kirchhoff
stress tensor

S = 2∂Cψ̂(C, θ) . (5.2.12)

5.2.5 Concept of Material Symmetry

When a material has a particular micro-structure that has to
be taken into account in constitutive equations. As we dis-
cussed before, in the context continuum modeling of materi-
als, the scale difference between the micro and macro levels
is so large that the specific discrete micro-structure can be
incorporated in a smeared way. The micro-structure might
have an anisotropic (direction-dependent) character, which is
observed, for example, in crystals, nano-composites, biolog-
ical tissues to name a few. Isotropic material response, how-
ever, corresponds to the case where the micro-structure has
no direction-dependent pattern.

A particular micro-structure can be classified through sym-
metry groups of rotations, which do not disturb the pattern
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X

B
NX

of the micro-structure under consideration. Elementary ex-
amples for the symmetry groups are transverse isotropy and
orthotropy. A material symmetry group G is then defined in
terms of rotations preserving the material micro-structure

G := {Q1, Q2, . . .} ⊂ SO(3) (5.2.13)

where SO(3) denotes the special orthogonal group defined by

SO(3) :=
{

Q|Q · QT = 1 ∧ det(Q) = 1
}

(5.2.14)

Qπ

Since the rotations belonging to the symmetry group G do
not alter the material architecture, we require the free energy
must also be invariant with respect to these rotations super-
imposed on the reference neighborhood of the material NX .

ψ̂(F · QT) = ψ̂(F) ∀Q ∈ G ⊂ SO(3) . (5.2.15)
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F

NX

NX Nx

Q ∈ G F! = F · QT

5.2.6 Isotropic Hyperelasticity

Isotropic materials do not possess a distinct micro-structure.
Therefore, the energy storage function, free energy, must be
invariant with respect to all rotations. The symmetry group
of an isotropic material is the full special orthogonal group

Giso ≡ SO(3) . (5.2.16)

This property leads us to the simple representation of isotropic
free energy functions in terms of principal stretches or in-
variants. To show this, we consider the spectral representa-
tion of the deformation gradient F = ∑

3
α=1 λαnα ⊗ Nα in the

free energy function

ψ(F) = ψ̂(∑
3
α=1 λαnα ⊗ Nα)

ψ(F · QT) = ψ̂(∑
3
α=1 λαnα ⊗ Q · Nα)

(5.2.17)

and we require the equality

ψ̂(
3

∑
α=1

λαnα ⊗ Nα) = ψ̂(
3

∑
α=1

λαnα ⊗ Q · Nα) ∀Q ∈ SO(3) .

(5.2.18)
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5 Introduction to Nonlinear Continuum Mechanics

with the Lagrangean eigenvectors Nα mapped to an arbi-
trary vector Q · Nα. This implies that the free energy ψ̂ can-
not depend upon Nα. We also recall that the principle of
objectivity requires

ψ̂(Q · F) = ψ̂(F) ,

ψ̂(∑
3
α=1 λαQ · nα ⊗ Nα) = ψ̂(∑

3
α=1 λαnα ⊗ ·Nα)

(5.2.19)

for all Q ∈ SO(3). In addition to the material symmetry
condition, the objectivity principle excludes the functional
dependency of the free energy is dependent on the Eulerian
eigenvectors nα. Combination of the conclusions we drawn
from (5.2.18) and (5.2.19) leads us to simple representation
of the free energy of isotropic materials

ψ = ψ̄(λ1, λ2, λ3) (5.2.20)

Since the principal invariants of the right and left Cauchy
Green tensors C and b are symmetric functions of the prin-
cipal stretches, i.e.

I1(C) = I1(b) = λ2
1 + λ2

2 + λ2
3 ,

I2(C) = I2(b) = λ2
1λ2

2 + λ2
2λ2

3 + λ2
1λ2

3 ,

I3(C) = I3(b) = λ2
1λ2

2λ2
3 ,

(5.2.21)

an alternative representation of isotropic elasticity is obtained
in terms of the principal invariants

ψ = ψ̃(I1, I2, I3) . (5.2.22)

At this point, it is worth noting that the left Cauchy Green
tensor remains unaltered under arbitrary rotations of the ref-
erence neighborhood NX

b! = F · QT · Q · FT = F · FT = b .
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This suggests that a free energy of hyperelasticity depend-
ing solely on b, i.e. ψ̂(b), is restricted to the isotropic elastic
material response.

5.2.6.1 Compressible Neo-Hookean Material

A version of compressible Neo-Hookean material model of
hyperelasticity is described by the following free energy

ψ = ψ̂(I1, J) =
Λ

4
(J2 − 1) − (µ +

Λ

2
) ln J +

µ

2
(I1 − 3)

where Λ and µ are the material parameters, I1 := C : 1 and
J2 = det(C). The second Piola-Kirchhoff stress tensor can be
computed by using the result S = 2∂Cψ

S = 2
∂ψ̂

∂C
=

∂ψ̂

∂I1
2

∂I1

∂C
+

∂ψ̂

∂J
2

∂J

∂C

Since ∂Cdet(C) = det(C)C−1 and ∂C I1 = 1, the tensorial
derivatives can be shown to be

2∂C I1 = 2 1 and 2∂C J = JC−1 .

Derivatives of the free energy function with respect to the
deformation measures I1 and J are

∂I1
ψ̂ =

µ

2
and ∂Jψ̂ =

Λ

2
J − (µ +

Λ

2
)J−1 .

Insertion yields the explicit form of S

S = 2
∂ψ̂

∂C
= µ(1 − C−1) +

Λ

2

(

J2 − 1
)

C−1 .

Having this result at hand, the first Piola-Kirchhoff stress
tensor

P = F · S = µ(F − F−T) +
Λ

2

(

J2 − 1
)

F−T
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and the Kirchhoff stresses

τ = P · FT = F · S · FT = µ(b − 1) +
Λ

2

(

J2 − 1
)

1

are computed through the push-forward operations.

5.2.6.2 Computation of Homogeneous Stress-Stretch Response

Identification of material parameters of a phenomenological
material model is commonly carried out by fitting experi-
mental data. These data often consist of stress-stretch curves
acquired from homogeneous experiments, such as uniaxial,
biaxial, simple shear deformations. Purely homogeneous de-
formations correspond to the cases where the eigenvectors
(both spatial and material) do not evolve during the defor-
mation, but remain parallel to the chosen reference rectan-
gular coordinate system. That is, in purely homogeneous
deformations, the deformation gradient F has a diagonal
representation

F = diag[F11, F22, F33] = diag[λ1, λ2, λ3] (5.2.23)

in terms of principal stretches with respect to the chosen co-
ordinate system. This form of the deformation gradient re-
sults in also diagonal form of the first Piola-Kirchhoff stress
for an isotropic material

P = P̂(F) = diag[P11(F), P22(F), P33(F)] . (5.2.24)

In different homogeneous deformations, at least one compo-
nent of the deformation gradient is prescribed and the other
components are to be computed from the traction (stress)
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boundary conditions associated with the particular experi-
ment considered. The stress component of interest is gener-
ally the one in the direction in which we prescribe the de-
formation. The forthcoming examples illustrate boundary
conditions for the uniaxial and biaxial tests.

e1e1

e2 e2

e3 e3
λ1 λ1

λ2

λ2
λ3

λ3

P11 .= 0
P11 .= 0

P22 .= 0

P22 = 0

P33 = 0 P33 = 0

Component(s) of the stress tensor in the direction(s) where
the stretch value is prescribed is/are unknown. On the other
hand, stresses in the directions that are free to deform are
zero. In a general inhomogeneous boundary value problem,
these define the Dirichlet (essential) and Neumann (natural)
boundaries whose intersection is an empty set.

Since the first Piola-Kirchhoff stress tensor and the deforma-
tion gradient have diagonal representations, we can store
them in 3 × 1 vector format

[F] =











F11

F22

F33











=





Fu

Fk



 and [P] =











P11

P22

P33











=





Pk

Pu





(5.2.25)

where the subscripts k and u denote the known and unknown
components, respectively. The known components of the
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stress tensor Pk are generally zero, Pk = 0. Therefore, these
equations serve as a residual vector. That is, for a given Fk,
the following equality

Pk = P̂k(Fu) = 0 (5.2.26)

has to be solved for Fu. In general, the residual is a non-
linear function of Fu and therefore should be solved itera-
tively. To this end, for a given Fk we linearize Pk at some
intermediate value of Fu during iteration, say F̄u,

Lin Pk|F̄u
= Pk|F̄u

+ Aku · (Fu − F̄u) = 0 (5.2.27)

where Aku := ∂Fu
Pk

∣

∣

F̄u
stands for the tangent matrix con-

taining appropriate components of the fourth-order elastic-
ity tensor (moduli) A := ∂FP = ∂2

FFψ. Solution of the lin-
earized residual expression (5.2.27) for Fu leads us to the
update equation of Fu

Fu ←− F̄u − A−1
ku · Pk|F̄u

, (5.2.28)

which is performed until the desired accuracy ||Pk|| < tol

is obtained. The following box summarizes the algorithm

1. For a given Fk, set Fu = F̄u(= 1)

2. Compute the residual Pk|F̄u
and the tangent Aku := ∂Fu

Pk

∣

∣

F̄u

3. Update Fu ←− F̄u − A−1
ku · Pk|F̄u

4. Check IF ||Pk|| < tol

5. NO set F̄u = Fu GOTO 2.

6. ELSE compute Pu(F) and

7. Assign new value to Fk and GOTO 1.
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Example: Uniaxial Tension at Finite Strains

We now consider a uniaxial extension of a hyperelastic ma-
terial in x1 direction. For this purpose, we prescribe Fk ≡
F11(t) as some function of time and want to compute the en-
gineering stress Pu ≡ P11 in that direction for a given value
of F11. The lateral faces of the specimen are stress-free, i.e.
Pk ≡ [P22 P33]T = 0. Therefore, the stretches in x2 and x3

directions are unkown, Fu ≡ [F22 F33]T.

Recall the compressible neo-Hookean material model we dis-
cussed in Section 5.2.6.1

PaA = µ(FaA − F−1
Aa ) +

Λ

2

(

J2 − 1
)

F−1
Aa .

Having the first Piola-Kirchhoff stresses at hand, the associ-
ated moduli can be computed as

AaAbB := ∂FbB
PaA = µδabδAB + (µ − Λ

2 (J2 − 1))F−1
Ab F−1

Ba

+ΛJ2F−1
Aa F−1

Bb .

The residual vector and the tangent matrix that we need
during the Newton iterations can then be shown to be

Pk(F) =





P22

P33



 =





µ(F22 − F−1
22 ) + Λ

2

(

J2 − 1
)

F−1
22

µ(F33 − F−1
33 ) + Λ

2

(

J2 − 1
)

F−1
33





Aku(F) = ∂Fu
Pk =

∂[P22 P33]T

∂[F22 F33]T
=





A2222 A2233

A3322 A3333





for the uniaxial tension.
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#include <stdio.h>

#include <stdlib.h>

#include <math.h>

/*_________________________________________

ME 338A Continuum Mechanics

Stanford University

E. Kuhl, S. Goktepe

Driver routine for uniaxial tension

_________________________________________*/

int main()

{

// open file for output

FILE *fp;

fp = fopen("data.out","w");

if (fp==NULL){

printf("Cannot create the output file!!\n");

exit(1);

}

int i,j;

// solution parameters

double dlam=1.e-2, lam_max=4., nres=0.,tol=1.e-12;

int niter, nitermax=50;

//material parameters

double Lam=0.3, mu=0.8;

//deformation measures, stresses and moduli

double J,F[3],P[3],AA[3][3];

//residual, tangent for iterations

double res[2],tang[2][2],det,temp;

//initialize F

for(i=0;i<3;i++) F[i]=1.;

// loop for loading

do {

niter = 0;

F[0] +=dlam;

printf("STRETCH=%4e\n", F[0]);

// loop of iterations

do {

niter +=1 ;

// compute Jacobi, det(F)
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J = F[0]*F[1]*F[2];

// MATERIAL MODEL specific computation of stresses and moduli

//-----------------------------------------------------------

// Compressible Neo-Hookean Material

for (i=0;i<3;i++) {

P[i] = mu*(F[i]-1./F[i]) + Lam*(J*J-1.)/F[i]/2;

for (j=0;j<3;j++) {

AA[i][j] = Lam*J*J/F[i]/F[j];

if(i==j) AA[i][j] += (mu - (-mu+Lam*(J*J-1.)/2.)/F[i]/F[j]);

}

//-----------------------------------------------------------

}

//compute residual vector and its norm

res[0] = P[1]; res[1] = P[2];

nres = sqrtl(res[0]*res[0] + res[1]*res[1]);

//construct tangent matrix

tang[0][0] = AA[1][1]; tang[0][1] = AA[1][2];

tang[1][0] = AA[2][1]; tang[1][1] = AA[2][2];

// invert tanget matrix

det = tang[0][0] *tang[1][1] - tang[0][1] *tang[1][0];

temp = tang[0][0];

tang[0][0] = tang[1][1]/det;

tang[1][1] = temp/det;

tang[0][1] = -tang[0][1]/det;

tang[1][0] = -tang[1][0]/det;

// update lateral stretches

F[1] = F[1] - (tang[0][0]*res[0]+tang[0][1]*res[1]);

F[2] = F[2] - (tang[1][0]*res[0]+tang[1][1]*res[1]);

// print iteration counter and norm of residual

printf("Iteration %4d, residual=%4e\n", niter,nres);

} while (tol<nres && niter<nitermax); // Check convergence

if (niter==nitermax) {printf("No convergence!\n"); break;};

// print stretch and PK1 stresses

fprintf(fp,"%4e, %4e\n",F[0],P[0]);

} while ((lam_max-F[0])>1.e-8); // check loading

fclose(fp);//close file

return 0;

}
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