ME338A CONTINUUM MECHANICS

lecture notes 13 tuesday, february 16th, 2010

4.2 Hyperelasticity

4.2.1 Specific stored energy

a hyperelastic / Green elastic constitutive law can be represented in the following form

$$\sigma = \sigma(\epsilon)$$
 and $\mathcal{D}^{\mathrm{loc}} = \mathcal{W} - \mathrm{D}_t \psi = 0$ (4.2.1)

- invertible relation between stress σ and strain ϵ (and stress and strain rates $D_t \sigma$ and $D_t \epsilon$) based on a potential
- potential corresponds to elastically stored specific energy
- by construction no dissipation of energy in closed strain circles

stress power ${\mathcal W}$

$$W = \sigma : D_t \epsilon \doteq D_t \psi \tag{4.2.2}$$

ensuring $\mathcal{D}^{\mathrm{loc}} = \mathcal{W} - \mathrm{D}_t \psi = 0$ by construction, thus

$$\psi = \psi(\epsilon)$$
 and $D_t \psi = D_{\epsilon} \psi : D_t \epsilon$ (4.2.3)

specific stored energy W as path independent integral of stress power W

$$W(\epsilon) = \psi(\epsilon) \tag{4.2.4}$$

with

$$W(\boldsymbol{\epsilon}_{t2}) - W(\boldsymbol{\epsilon}_{t1}) = \int_{t_1}^{t_2} D_t W dt = \int_{t_1}^{t_2} W dt = \int_{t_1}^{t_2} \boldsymbol{\sigma} : d\boldsymbol{\epsilon}$$
(4.2.5)

generic hyperelastic / Green elastic constitutive law

$$\sigma = D_{\epsilon}W \quad \text{with} \quad W = W(\epsilon)$$
 (4.2.6)

• path independent
$$W(\boldsymbol{\epsilon}_{t2}) - W(\boldsymbol{\epsilon}_{t1}) = \int_{t_1}^{t_2} \mathrm{d}\,W$$
• no dissipation
$$\oint \mathrm{d}\,W = 0$$
• symmetric
$$\frac{\mathrm{D}^2 W}{\mathrm{D}\boldsymbol{\epsilon} \otimes \mathrm{D}\boldsymbol{\epsilon}}$$

relation between stress rates and strain rates defines continuum tangent stiffness (fourth order tensor) \mathbb{E}^{tan}

$$D_t \sigma = \mathbb{E}^{\tan} : D_t \epsilon \tag{4.2.7}$$

fourth order tangent stiffness / elastic material tangent

$$\mathbb{E}^{tan} = \frac{D^2W}{D\boldsymbol{\epsilon} \otimes D\boldsymbol{\epsilon}} = E_{ijkl}\boldsymbol{e}_i \otimes \boldsymbol{e}_j \otimes \boldsymbol{e}_k \otimes \boldsymbol{e}_l \qquad (4.2.8)$$

minor and major symmetries: reduction from $3^4 = 81$ to $6^2 = 36$ to 21 coefficients

$$E_{ijkl} = E_{jikl} = E_{jilk} = E_{ijlk}$$
 and $E_{ijkl} = E_{klij}$ (4.2.9)

4.2.2 Specific complementary energy

specific stored energy

$$\sigma = D_{\epsilon}W$$
 with $W = W(\epsilon)$ (4.2.10)

Legendre-Fenchel tranform $\sigma
ightarrow \epsilon$

$$W^*(\sigma) = \sup_{\epsilon} (\sigma : \epsilon - W(\epsilon))$$
 (4.2.11)

specific complementary stored energy

$$W^* = W^*(\sigma) = \sigma : \epsilon(\sigma) - W(\epsilon(\sigma))$$
 (4.2.12)

general hyperelastic constitutive law

$$\epsilon = D_{\sigma} W^*$$
 with $W^* = W^*(\sigma)$ (4.2.13)

relation between strain rates and stress rates defines continuum tangent compliance (fourth order tensor) \mathbb{C}^{tan}

$$D_t \epsilon = \mathbb{C}^{tan} : D_t \sigma$$
 with $\mathbb{C}^{tan} = \mathbb{E}^{tan-1}$ (4.2.14)

fourth order tangent compliance

$$\mathbb{C}^{tan} = \frac{D^2W}{D\sigma \otimes D\sigma} = C_{ijkl} e_i \otimes e_j \otimes e_k \otimes e_l \qquad (4.2.15)$$

minor and major symmetries: reduction from $3^4 = 81$ to $6^2 = 36$ to 21 coefficients

$$C_{ijkl} = C_{jikl} = C_{jilk} = C_{ijlk}$$
 and $C_{ijkl} = C_{klij}$ (4.2.16)

4.3 Isotropic hyperelasticity

4.3.1 Specific stored energy

isotropy: identical eigenbasis of stress and strain

$$\sigma = \sum_{i_1}^3 \lambda_{\sigma i} \mathbf{n}_{\sigma i} \otimes \mathbf{n}_{\sigma i} \qquad \boldsymbol{\epsilon} = \sum_{i_1}^3 \lambda_{\epsilon i} \mathbf{n}_{\epsilon i} \otimes \mathbf{n}_{\epsilon i}$$
(4.3.1)

representation theorem for isotropic tensor–valued tensor functions

$$\sigma(\epsilon) = f_1 \mathbf{I} + f_2 \epsilon + f_3 \epsilon \cdot \epsilon \tag{4.3.2}$$

with $f_i = f_i(I_{\epsilon}, II_{\epsilon}, III_{\epsilon})$ function of strain invariants

$$I_{\epsilon} = \operatorname{tr}(\epsilon)$$

$$II_{\epsilon} = \frac{1}{2} [\operatorname{tr}^{2}(\epsilon) - \operatorname{tr}(\epsilon^{2})]$$

$$III_{\epsilon} = \operatorname{det}(\epsilon)$$

$$(4.3.3)$$

representation theorem for isotropic scalar–valued tensor functions

$$W(\epsilon) = W(I_{\epsilon}, II_{\epsilon}, III_{\epsilon}) \tag{4.3.4}$$

with
$$W(\epsilon) = W(\mathbf{Q} \cdot \epsilon \cdot \mathbf{Q}^{\mathsf{t}}) \ \forall \ \mathbf{Q} \in SO(3)$$

stress for hyperelastic material

$$\sigma = D_{\epsilon}W = \frac{DW}{DI_{\epsilon}} \frac{DI_{\epsilon}}{D\epsilon} + \frac{DW}{DII_{\epsilon}} \frac{DII_{\epsilon}}{D\epsilon} + \frac{DW}{DIII_{\epsilon}} \frac{DIII_{\epsilon}}{D\epsilon}$$
(4.3.5)

with derivatives of invariants I_{ϵ} , II_{ϵ} , III_{ϵ} with respect to second order tensor ϵ

$$D_{\epsilon} I_{\epsilon} = I$$

$$D_{\epsilon} II_{\epsilon} = -\epsilon + I_{\epsilon} I$$

$$D_{\epsilon} III_{\epsilon} = III_{\epsilon} \epsilon^{-t} = \epsilon^{2} - I_{\epsilon} \epsilon + II_{\epsilon} I$$

$$(4.3.6)$$

general representation of stress

$$\sigma = D_{I_{\epsilon}}W \mathbf{I} + D_{II_{\epsilon}}W \left[-\epsilon + I_{\epsilon} \mathbf{I} \right] + D_{III_{\epsilon}}W \left[\epsilon^{2} - I_{\epsilon}\epsilon + II_{\epsilon}\mathbf{I} \right]$$
comparison of coefficients
$$(4.3.7)$$

$$f_{1} = D_{I_{\epsilon}}W + I_{\epsilon} D_{II_{\epsilon}}W + II_{\epsilon} D_{III_{\epsilon}}W$$

$$f_{2} = -D_{II_{\epsilon}}W - I_{\epsilon} D_{III_{\epsilon}}W$$

$$f_{3} = D_{III_{\epsilon}}W$$

$$(4.3.8)$$

assumption of linearity (quadratic term vanishes), two Lamé constants λ and μ

$$f_1 = I_{\epsilon}\lambda = [\epsilon : I]\lambda \qquad f_2 = 2\mu \qquad f_3 = 0$$
 (4.3.9)

specific stored energy (quadratic in strains)

$$W = \frac{1}{2}\boldsymbol{\epsilon} : \mathbb{E} : \boldsymbol{\epsilon} = \frac{1}{2}\lambda \left[\boldsymbol{\epsilon} : \boldsymbol{I}\right]^2 + \mu \left[\boldsymbol{\epsilon}^2 : \boldsymbol{I}\right]$$
(4.3.10)

stress tensor (linear in strains)

$$\sigma = D_{\epsilon}W = \mathbb{E} : \epsilon = f_1 I + f_2 \epsilon = \lambda [\epsilon : I] I + 2 \mu \epsilon$$
 (4.3.11)

matrix representation of coordinates

$$[\sigma_{ij}] = \begin{bmatrix} \lambda I_{\epsilon} + 2 \mu \epsilon_{11} & 2 \mu \epsilon_{12} & 2 \mu \epsilon_{13} \\ 2 \mu \epsilon_{21} & \lambda I_{\epsilon} + 2 \mu \epsilon_{22} & 2 \mu \epsilon_{23} \\ 2 \mu \epsilon_{31} & 2 \mu \epsilon_{32} & \lambda I_{\epsilon} + 2 \mu \epsilon_{33} \end{bmatrix}$$
(4.3.12)

linear elastic continuum tangent stiffness (constant in strains)

$$\mathbb{E}^{tan} = \lambda \mathbf{I} \otimes \mathbf{I} + 2 \,\mu \mathbb{I}^{sym} \qquad D_t \boldsymbol{\sigma} = \mathbb{E}^{tan} : D_t \boldsymbol{\epsilon} \qquad (4.3.13)$$

linear elastic continuum secant stiffness

$$\mathbb{E} = \lambda \mathbf{I} \otimes \mathbf{I} + 2 \,\mu \mathbb{I}^{\text{sym}} \qquad \sigma = \mathbb{E} : \boldsymbol{\epsilon} \tag{4.3.14}$$

Voigt representation of stiffness tensor

$$\mathbb{E} = \begin{bmatrix} \lambda + 2\mu & \lambda & \lambda & 0 & 0 & 0 \\ \lambda & \lambda + 2\mu & \lambda & 0 & 0 & 0 \\ \lambda & \lambda & \lambda + 2\mu & 0 & 0 & 0 \\ 0 & 0 & 0 & \mu & 0 & 0 \\ 0 & 0 & 0 & 0 & \mu & 0 \\ 0 & 0 & 0 & 0 & 0 & \mu \end{bmatrix}$$
(4.3.15)