ME338A
 CONTINUUM MECHANICS

lecture notes 13
tuesday, february 16th, 2010

4.2 Hyperelasticity

4.2.1 Specific stored energy

a hyperelastic / Green elastic constitutive law can be represented in the following form

$$
\begin{equation*}
\sigma=\sigma(\epsilon) \quad \text { and } \quad \mathcal{D}^{\text {loc }}=\mathcal{W}-\mathrm{D}_{t} \psi=0 \tag{4.2.1}
\end{equation*}
$$

- invertible relation between stress σ and strain ϵ (and stress and strain rates $\mathrm{D}_{t} \sigma$ and $\mathrm{D}_{t} \epsilon$) based on a potential
- potential corresponds to elastically stored specific energy
- by construction no dissipation of energy in closed strain circles
stress power \mathcal{W}

$$
\begin{equation*}
\mathcal{W}=\sigma: \mathrm{D}_{t} \epsilon \doteq \mathrm{D}_{t} \psi \tag{4.2.2}
\end{equation*}
$$

ensuring $\mathcal{D}^{\text {loc }}=\mathcal{W}-D_{t} \psi=0$ by construction, thus

$$
\begin{equation*}
\psi=\psi(\boldsymbol{\epsilon}) \quad \text { and } \quad \mathrm{D}_{t} \psi=\mathrm{D}_{\boldsymbol{\epsilon}} \psi: \mathrm{D}_{t} \boldsymbol{\epsilon} \tag{4.2.3}
\end{equation*}
$$

specific stored energy W as path independent integral of stress power \mathcal{W}

$$
\begin{equation*}
W(\boldsymbol{\epsilon})=\psi(\boldsymbol{\epsilon}) \tag{4.2.4}
\end{equation*}
$$

with

$$
\begin{equation*}
W\left(\epsilon_{t 2}\right)-W\left(\epsilon_{t 1}\right)=\int_{t_{1}}^{t_{2}} \mathrm{D}_{t} W \mathrm{~d} t=\int_{t_{1}}^{t_{2}} \mathcal{W} \mathrm{~d} t=\int_{t_{1}}^{t_{2}} \sigma: \mathrm{d} \boldsymbol{\epsilon} \tag{4.2.5}
\end{equation*}
$$

generic hyperelastic / Green elastic constitutive law

$$
\begin{equation*}
\sigma=\mathrm{D}_{\boldsymbol{\epsilon}} W \quad \text { with } \quad W=W(\boldsymbol{\epsilon}) \tag{4.2.6}
\end{equation*}
$$

- path independent

$$
\begin{array}{r}
W\left(\boldsymbol{\epsilon}_{t 2}\right)-W\left(\boldsymbol{\epsilon}_{t 1}\right)=\int_{t_{1}}^{t_{2}} \mathrm{~d} W \\
\oint \mathrm{~d} W=0 \\
\frac{\mathrm{D}^{2} W}{\mathrm{D} \boldsymbol{\epsilon} \otimes \mathrm{D} \boldsymbol{\epsilon}}
\end{array}
$$

- no dissipation
- symmetric
relation between stress rates and strain rates defines continuum tangent stiffness (fourth order tensor) $\mathbb{E}^{\text {tan }}$

$$
\begin{equation*}
\mathrm{D}_{t} \sigma=\mathbb{E}^{\tan }: \mathrm{D}_{t} \epsilon \tag{4.2.7}
\end{equation*}
$$

fourth order tangent stiffness / elastic material tangent

$$
\begin{equation*}
\mathbb{E}^{\tan }=\frac{\mathrm{D}^{2} W}{\mathrm{D} \boldsymbol{\epsilon} \otimes \mathrm{D} \boldsymbol{\epsilon}}=E_{i j k l} \boldsymbol{e}_{i} \otimes \boldsymbol{e}_{j} \otimes \boldsymbol{e}_{k} \otimes \boldsymbol{e}_{l} \tag{4.2.8}
\end{equation*}
$$

minor and major symmetries: reduction from $3^{4}=81$ to $6^{2}=36$ to 21 coefficients

$$
\begin{equation*}
E_{i j k l}=E_{j i k l}=E_{j i l k}=E_{i j l k} \quad \text { and } \quad E_{i j k l}=E_{k l i j} \tag{4.2.9}
\end{equation*}
$$

4.2.2 Specific complementary energy

specific stored energy

$$
\begin{equation*}
\sigma=\mathrm{D}_{\boldsymbol{\epsilon}} W \quad \text { with } \quad W=W(\boldsymbol{\epsilon}) \tag{4.2.10}
\end{equation*}
$$

Legendre-Fenchel tranform $\sigma \rightarrow \boldsymbol{\epsilon}$

$$
\begin{equation*}
W^{*}(\sigma)=\sup _{\boldsymbol{\epsilon}}(\sigma: \boldsymbol{\epsilon}-W(\boldsymbol{\epsilon})) \tag{4.2.11}
\end{equation*}
$$

specific complementary stored energy

$$
\begin{equation*}
W^{*}=W^{*}(\boldsymbol{\sigma})=\sigma: \boldsymbol{\epsilon}(\boldsymbol{\sigma})-W(\boldsymbol{\epsilon}(\boldsymbol{\sigma})) \tag{4.2.12}
\end{equation*}
$$

general hyperelastic constitutive law

$$
\begin{equation*}
\boldsymbol{\epsilon}=\mathrm{D}_{\boldsymbol{\sigma}} W^{*} \quad \text { with } \quad W^{*}=W^{*}(\boldsymbol{\sigma}) \tag{4.2.13}
\end{equation*}
$$

relation between strain rates and stress rates defines continuum tangent compliance (fourth order tensor) $\mathbb{C}^{\text {tan }}$

$$
\begin{equation*}
\mathrm{D}_{t} \epsilon=\mathbb{C}^{\tan }: \mathrm{D}_{t} \sigma \quad \text { with } \quad \mathbb{C}^{\tan }=\mathbb{E}^{\tan -1} \tag{4.2.14}
\end{equation*}
$$

fourth order tangent compliance

$$
\begin{equation*}
\mathbb{C}^{\tan }=\frac{\mathrm{D}^{2} W}{\mathrm{D} \sigma \otimes \mathrm{D} \sigma}=C_{i j k l} \boldsymbol{e}_{i} \otimes \boldsymbol{e}_{j} \otimes \boldsymbol{e}_{k} \otimes \boldsymbol{e}_{l} \tag{4.2.15}
\end{equation*}
$$

minor and major symmetries: reduction from $3^{4}=81$ to $6^{2}=36$ to 21 coefficients

$$
\begin{equation*}
C_{i j k l}=C_{j i k l}=C_{j i l k}=C_{i j l k} \quad \text { and } \quad C_{i j k l}=C_{k l i j} \tag{4.2.16}
\end{equation*}
$$

4.3 Isotropic hyperelasticity

4.3.1 Specific stored energy

isotropy: identical eigenbasis of stress and strain

$$
\begin{equation*}
\boldsymbol{\sigma}=\sum_{i_{1}}^{3} \lambda_{\sigma i} \boldsymbol{n}_{\sigma i} \otimes \boldsymbol{n}_{\sigma i} \quad \boldsymbol{\epsilon}=\sum_{i_{1}}^{3} \lambda_{\epsilon i} \boldsymbol{n}_{\epsilon i} \otimes \boldsymbol{n}_{\epsilon i} \tag{4.3.1}
\end{equation*}
$$

representation theorem for isotropic tensor-valued tensor functions

$$
\begin{equation*}
\sigma(\boldsymbol{\epsilon})=f_{1} \boldsymbol{I}+f_{2} \boldsymbol{\epsilon}+f_{3} \boldsymbol{\epsilon} \cdot \boldsymbol{\epsilon} \tag{4.3.2}
\end{equation*}
$$

with $f_{i}=f_{i}\left(I_{\epsilon}, I I_{\epsilon}, I I I_{\epsilon}\right)$ function of strain invariants

$$
\begin{align*}
I_{\epsilon} & =\operatorname{tr}(\boldsymbol{\epsilon}) \\
I I_{\epsilon} & =\frac{1}{2}\left[\operatorname{tr}^{2}(\boldsymbol{\epsilon})-\operatorname{tr}\left(\epsilon^{2}\right)\right] \tag{4.3.3}\\
I I I_{\epsilon} & =\operatorname{det}(\boldsymbol{\epsilon})
\end{align*}
$$

representation theorem for isotropic scalar-valued tensor functions

$$
\begin{equation*}
W(\boldsymbol{\epsilon})=W\left(I_{\epsilon}, I I_{\epsilon}, I I I_{\epsilon}\right) \tag{4.3.4}
\end{equation*}
$$

with $W(\boldsymbol{\epsilon})=W\left(\boldsymbol{Q} \cdot \boldsymbol{\epsilon} \cdot \boldsymbol{Q}^{\mathrm{t}}\right) \forall \boldsymbol{Q} \in S O(3)$
stress for hyperelastic material

$$
\begin{equation*}
\sigma=\mathrm{D}_{\boldsymbol{\epsilon}} W=\frac{\mathrm{D} W}{\mathrm{D} I_{\epsilon}} \frac{\mathrm{D} I_{\epsilon}}{\mathrm{D} \boldsymbol{\epsilon}}+\frac{\mathrm{D} W}{\mathrm{D} I I_{\epsilon}} \frac{\mathrm{D} I I_{\epsilon}}{\mathrm{D} \boldsymbol{\epsilon}}+\frac{\mathrm{D} W}{\mathrm{D} I I I_{\epsilon}} \frac{\mathrm{D} I I I_{\epsilon}}{\mathrm{D} \boldsymbol{\epsilon}} \tag{4.3.5}
\end{equation*}
$$

with derivatives of invariants $I_{\epsilon}, I I_{\epsilon}, I I I_{\epsilon}$ with respect to second order tensor $\boldsymbol{\epsilon}$

$$
\begin{align*}
& \mathrm{D}_{\boldsymbol{\epsilon}} I_{\epsilon}=\boldsymbol{I} \\
& \mathrm{D}_{\boldsymbol{\epsilon}} I I_{\epsilon}=-\boldsymbol{\epsilon}+I_{\epsilon} \boldsymbol{I} \tag{4.3.6}\\
& \mathrm{D}_{\boldsymbol{\epsilon}} I I I_{\epsilon}==I I_{\epsilon} \boldsymbol{\epsilon}^{-\mathrm{t}}=\boldsymbol{\epsilon}^{2}-I_{\epsilon} \boldsymbol{\epsilon}+I I_{\epsilon} \boldsymbol{I}
\end{align*}
$$

general representation of stress

$$
\begin{equation*}
\sigma=\mathrm{D}_{I_{\epsilon}} W \boldsymbol{I}+\mathrm{D}_{I I_{\epsilon}} W\left[-\boldsymbol{\epsilon}+I_{\epsilon} \boldsymbol{I}\right]+\mathrm{D}_{I I I_{\epsilon}} W\left[\boldsymbol{\epsilon}^{2}-I_{\epsilon} \boldsymbol{\epsilon}+I I_{\epsilon} \boldsymbol{I}\right] \tag{4.3.7}
\end{equation*}
$$

comparison of coefficients

$$
\begin{align*}
& f_{1}=\mathrm{D}_{I_{\epsilon}} W+I_{\epsilon} \mathrm{D}_{I I_{\epsilon}} W+I I_{\epsilon} \mathrm{D}_{I I I_{\epsilon}} W \\
& f_{2}=-\mathrm{D}_{I I_{\epsilon}} W-I_{\epsilon} \mathrm{D}_{I I_{\epsilon}} W \tag{4.3.8}\\
& f_{3}=\mathrm{D}_{I I I_{\epsilon}} W
\end{align*}
$$

assumption of linearity (quadratic term vanishes), two Lamé constants λ and μ

$$
\begin{equation*}
f_{1}=I_{\epsilon} \lambda=[\boldsymbol{\epsilon}: \mathbf{I}] \lambda \quad f_{2}=2 \mu \quad f_{3}=0 \tag{4.3.9}
\end{equation*}
$$

specific stored energy (quadratic in strains)

$$
\begin{equation*}
W=\frac{1}{2} \epsilon: \mathbb{E}: \epsilon=\frac{1}{2} \lambda[\epsilon: I]^{2}+\mu\left[\epsilon^{2}: I\right] \tag{4.3.10}
\end{equation*}
$$

stress tensor (linear in strains)

$$
\begin{equation*}
\sigma=\mathrm{D}_{\boldsymbol{\epsilon}} W=\mathbb{E}: \boldsymbol{\epsilon}=f_{1} \boldsymbol{I}+f_{2} \boldsymbol{\epsilon}=\lambda[\boldsymbol{\epsilon}: \boldsymbol{I}] \boldsymbol{I}+2 \mu \boldsymbol{\epsilon} \tag{4.3.11}
\end{equation*}
$$

matrix representation of coordinates

$$
\left[\sigma_{i j}\right]=\left[\begin{array}{ccc}
\lambda I_{\epsilon}+2 \mu \epsilon_{11} & 2 \mu \epsilon_{12} & 2 \mu \epsilon_{13} \tag{4.3.12}\\
2 \mu \epsilon_{21} & \lambda I_{\epsilon}+2 \mu \epsilon_{22} & 2 \mu \epsilon_{23} \\
2 \mu \epsilon_{31} & 2 \mu \epsilon_{32} & \lambda I_{\epsilon}+2 \mu \epsilon_{33}
\end{array}\right]
$$

linear elastic continuum tangent stiffness (constant in strains)

$$
\begin{equation*}
\mathbb{E}^{\tan }=\lambda \boldsymbol{I} \otimes \boldsymbol{I}+2 \mu \mathbb{I}^{\mathrm{sym}} \quad \mathrm{D}_{t} \boldsymbol{\sigma}=\mathbb{E}^{\tan }: \mathrm{D}_{t} \boldsymbol{\epsilon} \tag{4.3.13}
\end{equation*}
$$

linear elastic continuum secant stiffness
$\mathbb{E}=\lambda \boldsymbol{I} \otimes \boldsymbol{I}+2 \mu \mathbb{I}^{\text {sym }} \quad \sigma=\mathbb{E}: \boldsymbol{\epsilon}$

Voigt representation of stiffness tensor

$$
\mathbb{E}=\left[\begin{array}{cccccc}
\lambda+2 \mu & \lambda & \lambda & 0 & 0 & 0 \tag{4.3.15}\\
\lambda & \lambda+2 \mu & \lambda & 0 & 0 & 0 \\
\lambda & \lambda & \lambda+2 \mu & 0 & 0 & 0 \\
0 & 0 & 0 & \mu & 0 & 0 \\
0 & 0 & 0 & 0 & \mu & 0 \\
0 & 0 & 0 & 0 & 0 & \mu
\end{array}\right]
$$

