ME338A
CONTINUUM MECHANICS

lecture notes 12

thursday, february 11th, 2010



4 Constitutive equations

motivation:

unknowns

density p
displacement u
temperature 0

mass flux r

stress o

heat flux g

in total

equations

e balance of mass

e balance of momentum
e balance of angular momentum
e balance of energy

in total
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balance of unknowns vs. number of equations: 20-8=12 equa-
tions are missing, introduction of 12 material specific consti-
tutive equations, i.e. equations for the mass flux r (3 eqns.),
the symmetric stress o = o' (6 eqns.) and the heat flux g (3
eqns.)
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4 Constitutive equations

4.1 Linear constitutive equations

e for the mass flux rwithr, =r-n
e for the momentum flux / stress ot = o with t,, = o' - n
o for the heat flux g withg, =g -n

{ei}i:1,2,3

in the simplest case, we could introduce ad hoc definitions
of the mass flux, the momentum flux and the heat flux in
terms of the spatial gradients of the density, the deformation
and the temperature
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4 Constitutive equations

4.1.1 Mass flux — Fick’s law

linear relation between mass flux r (vector) and density gra-
dient Vp (vector) in terms of mass conduction coefficient R
(second order tensor)

r=R-Vp (4.1.1)
index representation
rie; = [Ri]' e; X e]-] - [p,kek] = Rijeiéjkp,k = Ri]-p,]-ei (4.1.2)

matrix representation of coordinates

8| Ri1p1 + Rupp + Rizps
1= 17| =|Rxu P01 + Rppz + Ryps (4.1.3)
3 R3101 + Rzapp + Raz3pgs

special case of isotropie

r P1
R=RI r=RVp 1] = |r | =R|p,| (41.4)
L r3 — L p,3 -

a linear relation between the flux of matter r and the gradi-
ent of concentrations Vp is referred to as Fick’s law
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4 Constitutive equations

4.1.2 Momentum flux — Hook’s law

linear relation between momentum flux o (second order ten-
sor) and displacement gradient Vu or rather e = V*™u (sec-
ond order tensor) in terms of elasticity tensor IE (fourth or-
der tensor)

c=E:V7u=1IE:e€ (4.1.5)

index representation

gieiRe; = |EijneiRQeiR@RerRe;|-|€men e
] ] [ jkI ] k 1] [€mn n | (4.1.6)
= Eijuei ® ejoxm01n€mn = Eijui€n i @ e;
special case of isotropie
i.e. identical Eigenbasis of stress & strain
3 3
o = Z)\m‘nm‘ X Ny € = ZAeinei X Mg (4.1.7)

i1 i
representation theorem for isotropic tensor—valued tensor-
functions

o(€) = fil + fre + fze - € (4.1.8)

with f; = fi(I, 11, I11.) function of strain invariants

I = tr (6) =Ae1 + A + Ae3
IIG = %[trz(e) — tr (62)] = )\62)\,€3 -+ )\63)\61 -+ AelAGZ (419)
IIIG = det (6) = )\61 )\ez )\€3

a linear relation between the momentum flux ¢ and the strains
€ represents the generalized form of Hook’s law
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4 Constitutive equations

Hypoelasticity / Cauchy Elasticity

a hypoelastic / Cauchy elastic constitutive law can be repre-
sented in the following form

c=o(€) (4.1.10)

e invertible relation between stress ¢ and strain € (rates)
e possible dissipation of energy in closed strain circles

fDlOCdt:fa:edt—j{Dﬂ,bdt:fa:edt (4.1.11)

homogeneous strain path from €, to €,
e(a) =[1—a]e, +aey, de = ey, — €, |da (4.1.12)

stress work for linear elastic material

t 1
/Zo':de = / e(w) E: e, — €y ]da
f 0
1

— E[efz + etl] IE [efz - etl]

dissipation in isothermal closed straincyclet; — t, — t3 — #;

(4.1.13)

%Dloc dt = €t1 . IESkW : €ty +€t2 . ]ESkW . €t3 +€t3 . IESkW . €t1 7é 0
(4.1.14)
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4 Constitutive equations

4.1.3 Heat flux — Fourier’s law

linear relation between heat flux g (vector) and temperature
gradient V8 (vector) in terms of heat conduction coefficient
K (second order tensor)

q=1x-V0 (4.1.15)
index representation
qie; = [Ki]' e; X e]'] . [G,kek] = Kijeiéij,k = Kij(?,jei (4116)

matrix representation of coordinates

q1 k1101 + %1207 + x1303
Gl = | g2 | = | k101 + K00 + K303 (4.1.17)
g3 k3101 + k30 + k3303

special case of isotropie

q1 01
k=xI q=xV0 gl = | g2 | =x |0, | (41.18)
L q3 . L 9,3 .

a linear relation between the heat flux vector g and the tem-
perature gradient V0 is referred to as Fourier’s law which
goes back to Fourier [1822]
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