ME338A
 CONTINUUM MECHANICS

lecture notes 09

tuesday, february 02nd, 2010

3.2 Balance of mass

total mass m of a body $\overline{\mathcal{B}}$

$$
\begin{equation*}
m:=\int_{\overline{\mathcal{B}}} \mathrm{d} m \tag{3.2.1}
\end{equation*}
$$

mass density

$$
\begin{align*}
\rho & =\lim _{\Delta V \rightarrow 0} \frac{\Delta m}{\Delta V}=\frac{\mathrm{d} m}{\mathrm{~d} v} \quad \mathrm{~d} m=\rho \mathrm{d} V \tag{3.2.2}\\
m & =\int_{\overline{\mathcal{B}}} \rho \mathrm{d} V \tag{3.2.3}
\end{align*}
$$

mass exchange of body $\overline{\mathcal{B}}$ with environment $m^{\text {sur }}$ and m^{vol}

$$
\begin{equation*}
m^{\mathrm{sur}}:=\int_{\partial \overline{\mathcal{B}}} r_{n} \mathrm{~d} A \quad m^{\mathrm{vol}}:=\int_{\overline{\mathcal{B}}} \mathcal{R} \mathrm{d} V \tag{3.2.4}
\end{equation*}
$$

with contact mass flux $r_{n}=\boldsymbol{r} \cdot \boldsymbol{n}$ and mass source \mathcal{R}

3.2.1 Global form of balance of mass

"The time rate of change of the total mass m of a body $\overline{\mathcal{B}}$ is balanced with the mass exchange due to contact mass flux $m^{\text {sur }}$ and the at-a-distance mass exchange $m^{\text {vol } . " ~}$

$$
\begin{equation*}
\mathrm{D}_{t} m=m^{\mathrm{sur}}+m^{\mathrm{vol}} \tag{3.2.5}
\end{equation*}
$$

and thus

$$
\begin{equation*}
\mathrm{D}_{t} \int_{\overline{\mathcal{B}}} \rho \mathrm{d} V=\int_{\partial \overline{\mathcal{B}}} r_{n} \mathrm{~d} A+\int_{\overline{\mathcal{B}}} \mathcal{R} \mathrm{d} V \tag{3.2.6}
\end{equation*}
$$

3.2.2 Local form of balance of mass

modification of rate term $\mathrm{D}_{t} m$

$$
\begin{equation*}
\mathrm{D}_{t} m=\mathrm{D}_{t} \int_{\overline{\mathcal{B}}} \rho \mathrm{d} V \stackrel{\overline{\mathcal{B}} \text { fixed }}{=} \int_{\overline{\mathcal{B}}} \mathrm{D}_{t} \rho \mathrm{~d} V \tag{3.2.7}
\end{equation*}
$$

modification of surface term $m^{\text {sur }}$

$$
\begin{equation*}
m^{\text {sur }}=\int_{\partial \overline{\mathcal{B}}} r_{n} \mathrm{~d} A \stackrel{\text { Cauchy }}{=} \int_{\partial \overline{\mathcal{B}}} r \cdot \boldsymbol{n} \mathrm{~d} A \stackrel{\text { Gauss }}{=} \int_{\overline{\mathcal{B}}} \operatorname{div}(\boldsymbol{r}) \mathrm{d} V \tag{3.2.8}
\end{equation*}
$$

and thus

$$
\begin{equation*}
\int_{\overline{\mathcal{B}}} \mathrm{D}_{t} \rho \mathrm{~d} V=\int_{\overline{\mathcal{B}}} \operatorname{div}(\boldsymbol{r}) \mathrm{d} V+\int_{\overline{\mathcal{B}}} \mathcal{R} \mathrm{d} V \tag{3.2.9}
\end{equation*}
$$

for arbitrary bodies $\overline{\mathcal{B}} \rightarrow$ local form of mass balance

$$
\begin{equation*}
\mathrm{D}_{t} \rho=\operatorname{div}(\boldsymbol{r})+\mathcal{R} \tag{3.2.10}
\end{equation*}
$$

Classical continuum mechanics of closed systems

 in classical closed system continuum mechanics (here), $r=$ 0 and $\mathcal{R}=0$, such that the mass density ρ is constant in time$$
\begin{equation*}
\mathrm{D}_{t} \rho(x, t)=0 \quad \rho=\rho(\boldsymbol{x})=\mathrm{const} \tag{3.2.11}
\end{equation*}
$$

typically $\boldsymbol{r} \neq \mathbf{0}$ and $\mathcal{R} \neq 0$ only in bio- or chemomechanics

3.3 Balance of linear momentum

total momentum p of a body $\overline{\mathcal{B}}$

$$
\begin{equation*}
p:=\int_{\overline{\mathcal{B}}} \mathrm{D}_{t} \boldsymbol{u} \mathrm{~d} m=\int_{\overline{\mathcal{B}}} \boldsymbol{v} \mathrm{d} m=\int_{\overline{\mathcal{B}}} \rho \boldsymbol{v} \mathrm{d} V \tag{3.3.1}
\end{equation*}
$$

momentum exchange of body $\overline{\mathcal{B}}$ with environment through contact forces $f^{\text {sur }}$ and at-a-distance forces $f^{\text {vol }}$

$$
\begin{equation*}
f^{\text {sur }}:=\int_{\partial \overline{\mathcal{B}}} \boldsymbol{t}_{\sigma} \mathrm{d} A \quad f^{\mathrm{vol}}:=\int_{\overline{\mathcal{B}}} b \mathrm{~d} V \tag{3.3.2}
\end{equation*}
$$

with contact/surface force $\boldsymbol{t}_{\sigma}=\boldsymbol{\sigma}^{\mathrm{t}} \cdot \boldsymbol{n}$ and volume force \boldsymbol{b}

3.3.1 Global form of balance of momentum

"The time rate of change of the total momentum p of a body $\overline{\mathcal{B}}$ is balanced with the momentum exchange due to contact momentum flux / surface force $f^{\text {sur }}$ and the at-a-distance momentum exchange / volume force f^{vol}."

$$
\begin{equation*}
\mathrm{D}_{t} p=f^{\mathrm{sur}}+f^{\mathrm{vol}} \tag{3.3.3}
\end{equation*}
$$

and thus

$$
\begin{equation*}
\mathrm{D}_{t} \int_{\overline{\mathcal{B}}} \rho \boldsymbol{v} \mathrm{d} V=\int_{\partial \overline{\mathcal{B}}} \boldsymbol{t}_{\sigma} \mathrm{d} A+\int_{\overline{\mathcal{B}}} \boldsymbol{b} \mathrm{d} V \tag{3.3.4}
\end{equation*}
$$

3.3.2 Local form of balance of momentum

modification of rate term $\mathrm{D}_{t} p$

$$
\begin{equation*}
\mathrm{D}_{t} \boldsymbol{p}=\mathrm{D}_{t} \int_{\overline{\mathcal{B}}} \rho \boldsymbol{v} \mathrm{d} V \stackrel{\overline{\mathcal{B}} \text { fixed }}{=} \int_{\overline{\mathcal{B}}} \mathrm{D}_{t}(\rho v) \mathrm{d} V \tag{3.3.5}
\end{equation*}
$$

modification of surface term $f^{\text {sur }}$

$$
\begin{equation*}
f^{\text {sur }}=\int_{\partial \overline{\mathcal{B}}} \boldsymbol{t}_{\sigma} \mathrm{d} A \stackrel{\text { Cauchy }}{=} \int_{\partial \overline{\mathcal{B}}} \sigma_{\mathrm{t}} \cdot \boldsymbol{n} \mathrm{~d} A \stackrel{\text { Gauss }}{=} \int_{\overline{\mathcal{B}}} \operatorname{div}\left(\sigma^{\mathrm{t}}\right) \mathrm{d} V \tag{3.3.6}
\end{equation*}
$$

and thus

$$
\begin{equation*}
\int_{\overline{\mathcal{B}}} \mathrm{D}_{t}(\rho \boldsymbol{v}) \mathrm{d} V=\int_{\overline{\mathcal{B}}} \operatorname{div}\left(\boldsymbol{\sigma}^{\mathrm{t}}\right) \mathrm{d} V+\int_{\overline{\mathcal{B}}} \boldsymbol{b} \mathrm{d} V \tag{3.3.7}
\end{equation*}
$$

for arbitrary bodies $\overline{\mathcal{B}} \rightarrow$ local form of momentum balance

$$
\begin{equation*}
\mathrm{D}_{t}(\rho \boldsymbol{v})=\operatorname{div}\left(\sigma^{\mathrm{t}}\right)+\boldsymbol{b} \tag{3.3.8}
\end{equation*}
$$

3.3.3 Reduction with lower order balance equations

balance equations are typically modified with the help of lower order balance equations

$$
\begin{equation*}
\mathrm{D}_{t}(\rho \boldsymbol{v})=v \mathrm{D}_{t} \rho+\rho \mathrm{D}_{t} v=\operatorname{div}\left(\sigma^{\mathrm{t}}\right)+\boldsymbol{b} \tag{3.3.9}
\end{equation*}
$$

with balance of mass multiplied by velocity v

$$
\begin{equation*}
v \mathrm{D}_{t} \rho=v \operatorname{div}(\boldsymbol{r})+\boldsymbol{v} \mathcal{R}_{0}=\operatorname{div}(\boldsymbol{v} \otimes \boldsymbol{r})-\nabla v \cdot r+v \mathcal{R}_{0} \tag{3.3.10}
\end{equation*}
$$

local momentum balance in reduced format

$$
\begin{equation*}
\rho \mathrm{D}_{t} \boldsymbol{v}=\operatorname{div}\left(\sigma^{t}-\nabla \boldsymbol{v} \otimes \boldsymbol{r}\right)+\boldsymbol{b}+\nabla \boldsymbol{v} \cdot \boldsymbol{r}-\boldsymbol{v} \mathcal{R}_{0} \tag{3.3.11}
\end{equation*}
$$

