ME338A CONTINUUM MECHANICS

lecture notes 08

thursday, january 28th, 2010

Volumetric-deviatoric decomposition

in analogy to the strain tensor ϵ , the stress tensor σ can be additively decomposed into a volumetric part $\sigma^{\rm vol}$ and a traceless deviatoric part $\sigma^{\rm dev}$

volumetric – deviatoric decomposition of stress tensor σ

$$\sigma = \sigma^{\text{vol}} + \sigma^{\text{dev}} \tag{3.1.21}$$

with volumetric and deviatoric stress tensor $\sigma^{
m vol}$ and $\sigma^{
m dev}$

$$\operatorname{tr}(\sigma^{\mathrm{vol}}) = \operatorname{tr}(\sigma) \qquad \operatorname{tr}(\sigma^{\mathrm{dev}}) = 0$$
 (3.1.22)

ullet volumetric second order tensor $\sigma^{
m vol}$

$$\sigma^{\text{vol}} = \frac{1}{3} [\sigma : I] I = \mathbb{I}^{\text{vol}} : \sigma$$
 (3.1.23)

upon double contraction volumetric fourth order unit tensor $\mathbb{I}^{\mathrm{vol}}$ extracts volumetric part σ^{vol} of stress tensor

$$\mathbb{I}^{\text{vol}} = \frac{1}{3} \mathbf{I} \otimes \mathbf{I}
\mathbb{I}^{\text{vol}} = \frac{1}{3} \delta_{ij} \delta_{kl} \mathbf{e}_i \otimes \mathbf{e}_j \otimes \mathbf{e}_k \otimes \mathbf{e}_l$$
(3.1.24)

ullet deviatoric second order tensor $\sigma^{
m dev}$

$$\sigma^{\text{dev}} = \sigma - \frac{1}{3} [\sigma : I] I = \mathbb{I}^{\text{dev}} : \sigma$$
 (3.1.25)

upon double contraction deviatoric fourth order unit tensor \mathbb{I}^{dev} extracts deviatoric part of stress tensor

$$\mathbf{I}^{\text{dev}} = \mathbf{I}^{\text{sym}} - \mathbf{I}^{\text{vol}} = \mathbf{I}^{\text{sym}} - \frac{1}{3}\mathbf{I} \otimes \mathbf{I}$$

$$\mathbf{I}^{\text{dev}} = \left[\frac{1}{2}\delta_{ik}\delta_{jl} + \frac{1}{2}\delta_{il}\delta_{jk} - \frac{1}{3}\delta_{ij}\delta_{kl}\right]\mathbf{e}_{i} \otimes \mathbf{e}_{j} \otimes \mathbf{e}_{k} \otimes \mathbf{e}_{l}$$
(3.1.26)

Volumetric stress

volumetric part $\sigma^{ ext{vol}}$ of stress tensor σ

$$\sigma^{\text{vol}} = \frac{1}{3} \left[\sigma : I \right] I = \frac{1}{3} \left[I \otimes I \right] : \sigma = \mathbb{I}^{\text{vol}} : \sigma$$
 (3.1.27)

interpretation of trace as hydrostatic pressure

$$p = \frac{1}{3} \text{tr}(\sigma) = \frac{1}{3} \sigma : I = \frac{1}{3} (\sigma_{11} + \sigma_{22} + \sigma_{33})$$
 (3.1.28)

index representation

$$\sigma^{\text{vol}} = \sigma_{ij}^{\text{vol}} \, e_i \otimes e_j \tag{3.1.29}$$

matrix representation of coordinates $[\sigma_{ij}^{\mathrm{vol}}]$

$$[\sigma_{ij}^{\text{vol}}] = p \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \qquad p = \frac{1}{3} \operatorname{tr}(\sigma) \tag{3.1.30}$$

volumetric stress tensor $\sigma^{
m vol}$ is a spherical second order tensor as $\sigma^{
m vol} = p \: I$

volumetric stress tensor $\sigma^{
m vol}$ contains the hydrostatic pressure part of the total stress tensor σ

Deviatoric stress

deviatoric stress tensor $\sigma^{\rm dev}$ preserves the volume and containes the remaining part of the total stress tensor σ

deviatoric part $\sigma^{
m dev}$ of the stress tensor σ

$$\sigma^{\text{dev}} = \sigma - \sigma^{\text{vol}} = \sigma - \frac{1}{3} \left[\sigma : I\right] I = \mathbb{I}^{\text{dev}} : \sigma$$
 (3.1.31)

index representation

$$\sigma^{\text{dev}} = \sigma_{ij}^{\text{dev}} \, \boldsymbol{e}_i \otimes \boldsymbol{e}_j \tag{3.1.32}$$

matrix representation of coordinates $[\sigma_{ij}^{\text{dev}}]$

$$[\sigma_{ij}^{\text{dev}}] = \frac{1}{3} \begin{bmatrix} 2\sigma_{11} - \sigma_{22} - \sigma_{33} & \sigma_{12} & \sigma_{13} \\ \sigma_{21} & 2\sigma_{22} - \sigma_{11} - \sigma_{33} & \sigma_{13} \\ \sigma_{31} & \sigma_{32} & 2\sigma_{33} - \sigma_{11} - \sigma_{22} \end{bmatrix}$$

$$(3.1.33)$$

trace of deviatoric stresss $\operatorname{tr}(\sigma^{\operatorname{dev}})$

$$\operatorname{tr}(\sigma^{\text{dev}}) = \frac{1}{3} \left[2\sigma_{11} - \sigma_{22} - \sigma_{33} \right] + \frac{1}{3} \left[2\sigma_{22} - \sigma_{11} - \sigma_{33} \right] + \frac{1}{3} \left[2\sigma_{33} - \sigma_{11} - \sigma_{22} \right] = 0$$
(3.1.34)

deviatoric stress tensor $\sigma^{\rm dev}$ is a traceless second order tensor as ${\rm tr}\,(\sigma^{\rm dev})=0$

deviatoric stress tensor $\sigma^{
m dev}$ contains the hydrostatic pressure free part of the total stress tensor σ

Normal-shear decomposition

assume we are interested in the stress σ_n normal to a particular plane characterized through its normal n, i.e. the normal projection of the stress vector t_{σ}

$$\sigma_n = t_{\sigma} \cdot n = [\sigma^t \cdot n] \cdot n = \sigma^t : [n \otimes n] = \sigma^t : N \quad (3.1.35)$$

normal–shear (tangential) decomposition of stress vector t_{σ}

$$t_{\sigma} = \sigma_n + \sigma_t \tag{3.1.36}$$

normal stress vector – stress in direction of *n*

$$\sigma_n = [\sigma^{\mathsf{t}} : [n \otimes n]] \, n = \sigma^{\mathsf{t}} : [n \otimes n \otimes n] \tag{3.1.37}$$

shear (tangential) stress vector – stress in the plane

$$\sigma_{t} = t_{\sigma} - \sigma_{n} = \sigma^{t} \cdot n - \sigma^{t} : [n \otimes n \otimes n]$$

$$= \sigma^{t} : [\mathbb{I}^{\text{sym}} \cdot n - n \otimes n \otimes n] = \sigma^{t} : T$$
(3.1.38)

amount of shear stress τ_n

$$||\tau_n||^2 = (\boldsymbol{t}_{\sigma} - \boldsymbol{\sigma}_n) \cdot (\boldsymbol{t}_{\sigma} - \boldsymbol{\sigma}_n) = \boldsymbol{t}_{\sigma} \cdot \boldsymbol{t}_{\sigma} - 2\boldsymbol{t}_{\sigma} \cdot \boldsymbol{\sigma}_n + \sigma_n^2 \boldsymbol{n} \cdot \boldsymbol{n}$$
(3.1.39)

and thus

$$\tau_n = ||\boldsymbol{\sigma}_t|| = \sqrt{\boldsymbol{\sigma}_t \cdot \boldsymbol{\sigma}_t} = \sqrt{\boldsymbol{t}_\sigma \cdot \boldsymbol{t}_\sigma - \sigma_n^2}$$
 (3.1.40)

in general, i.e. for an arbitrary direction n, we have normal and shear contributions to the stress vector, however, three particular directions $\{n_{\sigma i}\}_{i=1,2,3}$ can be identified, for which $t_{\sigma} = \sigma_n$ and thus $\sigma_t = \mathbf{0}$, the corresponding $\{n_{\sigma i}\}_{i=1,2,3}$ are called prinicpal stress directions and $\{\sigma_{n\,i}\}_{i=1,2,3} = \{\lambda_{\sigma i}\}_{i=1,2,3}$ are the principal stresses

Principal stresses

assume stress tensor σ^t to be known at $x \in \mathcal{B}$, principal stresses $\{\lambda_{\sigma i}\}_{i=1,2,3}$ and principal stress directions $\{n_{\sigma i}\}_{i=1,2,3}$ can be derived from solution of special eigenvalue problem according to §1.1.3

$$\sigma^{t} \cdot \boldsymbol{n}_{\sigma i} = \lambda_{\sigma i} \, \boldsymbol{n}_{\sigma i} \qquad [\sigma^{t} - \lambda_{\sigma i}] \cdot \boldsymbol{n}_{\sigma i} = \mathbf{0} \qquad (3.1.41)$$

solution

$$\det\left(\boldsymbol{\sigma}^{t} - \lambda_{\sigma} \boldsymbol{I}\right) = 0 \tag{3.1.42}$$

or in terms of roots of characteristic equation

$$\lambda_{\sigma}^{3} - I_{\sigma} \lambda_{\sigma}^{2} + II_{\sigma} \lambda_{\sigma} - III_{\sigma} = 0 \tag{3.1.43}$$

roots of characteristic equation in terms of principal invariants of σ^t

$$I_{\sigma} = \operatorname{tr}(\sigma^{t}) = \lambda_{\sigma 1} + \lambda_{\sigma 2} + \lambda_{\sigma 3}$$

$$II_{\sigma} = \frac{1}{2} [\operatorname{tr}^{2}(\sigma^{t}) - \operatorname{tr}(\sigma^{t2})] = \lambda_{\sigma 2} \lambda_{\sigma 3} + \lambda_{\sigma 3} \lambda_{\sigma 1} + \lambda_{\sigma 1} \lambda_{\sigma 2}$$

$$III_{\sigma} = \operatorname{det}(\sigma^{t}) = \lambda_{\sigma 1} \lambda_{\sigma 2} \lambda_{\sigma 3}$$

$$(3.1.44)$$

spectral representation of σ

$$\sigma^{t} = \sum_{i=1}^{3} \lambda_{\sigma i} \, \boldsymbol{n}_{\sigma i} \otimes \boldsymbol{n}_{\sigma i} \tag{3.1.45}$$

principal stresses $\lambda_{\sigma i}$ are purely normal, no shear stress τ_n in principal directions, i.e. $t_{\sigma i} = \sigma_n = \lambda_{\sigma i} n_{\sigma i}$ and $\sigma_t = 0$ thus $\tau_n = 0$

due to symmetry of stresses $\sigma = \sigma^t$, stress tensor posseses three real eigenvalues $\{\lambda_{\sigma i}\}_{i=1,2,3}$, corresponding eigendirections $\{n_{\sigma i}\}_{i=1,2,3}$ are thus orthogonal $n_{\sigma i} \cdot n_{\sigma j} = \delta_{ij}$

Special case of plane stress

dimensional reduction in case of plane stress with vanishing stresses $\sigma_{13} = \sigma_{23} = \sigma_{31} = \sigma_{32} = \sigma_{33} = 0$ in out of plane direction, e.g. for flat sheets

$$\sigma = \sigma_{ij} \, \boldsymbol{e}_i \otimes \boldsymbol{e}_j \tag{3.1.46}$$

matrix representation of coordinates $[\sigma_{ij}]$

$$[\sigma_{ij}] = \begin{bmatrix} \sigma_{11} & \sigma_{12} & 0 \\ \sigma_{21} & \sigma_{22} & 0 \\ 0 & 0 & 0 \end{bmatrix}$$
 (3.1.47)

Voigt representation of stress

three dimensional second order stress tensor σ

$$\sigma = \sigma_{ii} \, e_i \otimes e_i \tag{3.1.48}$$

matrix representation of coordinates $[\sigma_{ij}]$

$$[\sigma_{ij}] = \begin{bmatrix} \sigma_{11} & \sigma_{12} & \sigma_{13} \\ \sigma_{21} & \sigma_{22} & \sigma_{23} \\ \sigma_{31} & \sigma_{23} & \sigma_{33} \end{bmatrix}$$
(3.1.49)

due to symmetry $[\sigma_{ij}] = [\sigma_{ji}]$ and thus $\sigma_{12} = \sigma_{21}$, $\sigma_{23} = \sigma_{32}$, $\sigma_{31} = \sigma_{13}$, stress tensor σ contains only six independent components σ_{11} , σ_{22} , σ_{33} , σ_{12} , σ_{23} , σ_{31} , it proves convenient to represent second order tensor σ through a vector $\underline{\sigma}$

$$\underline{\sigma} = [\sigma_{11}, \sigma_{22}, \sigma_{33}, \sigma_{12}, \sigma_{23}, \sigma_{31}]^{t}$$
(3.1.50)

vector representation $\underline{\sigma}$ of stress σ in case of plane stress

$$\underline{\sigma} = [\sigma_{11}, \sigma_{22}, \sigma_{33}, \sigma_{12}]^{\mathsf{t}} \tag{3.1.51}$$

3.1.3 Concept of heat flux

the contact heat flux q_n at a point x is a scalar of the unit [energy/time/surface area]

the contact heat flux q_n characterizes the energy transport normal to the tangent plane to an imaginary surface passing through this point with normal vector n

definition of contact heat flux q_n in analogy to Cauchy's postulate, lemma and theorem originally introduced for the momentum flux in §3.1.2

Cauchy's postulate

$$q_n = q_n\left(\mathbf{x}, \mathbf{n}\right) \tag{3.1.52}$$

Cauchy's lemma

$$q_n(x, n) = -q_n(x, -n)$$
 (3.1.53)

Cauchy's theorem

the contact heat flux q_n can be expressed as linear function of the surface normal n and the heat flux vector q

$$q_n = \mathbf{q} \cdot \mathbf{n} \tag{3.1.54}$$

Heat flux vector

the vector field q is called heat flux vector

$$q = q_i e_i \tag{3.1.55}$$

Cauchy's theorem

$$q_n = \mathbf{q} \cdot \mathbf{n} \tag{3.1.56}$$

index representation

$$q_n = (q_i e_i) \cdot (n_j e_j) = q_i n_j \delta_{ij} = q_i n_i$$
 (3.1.57)

geometric interpretation

the coordinates q_i characterize the heat energy transport through the planes parallel to the coordinate planes

in continuum mechanics of adiabatic systems the heat flux vector vanishes identically