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3 Balance equations

Volumetric—deviatoric decomposition

in analogy to the strain tensor €, the stress tensor ¢ can
be additively decomposed into a volumetric part o' and
a traceless deviatoric part ¢9¢

volumetric — deviatoric decomposition of stress tensor o
c=0c"+ o (3.1.21)

with volumetric and deviatoric stress tensor ¢ and o9ev

tr(c*) =tr(c)  tr(c™) =0 (3.1.22)
e volumetric second order tensor ¢°
1
oV = g[a I I=1T"":¢ (3.1.23)

upon double contraction volumetric fourth order unit tensor
I'°! extracts volumetric part o' of stress tensor

I = 111
X (3.1.24)
Mol — %51']'5;{1 e X €; X ex X e
e deviatoric second order tensor od9¢¥
1
o =0 — 5[o- NI=1":¢ (3.1.25)

upon double contraction deviatoric fourth order unit tensor
9V extracts deviatoric part of stress tensor

[[dev — Jsym _ [vol — Jsym — % IRI

) 1 1 1 (3.1.26)
19 =[5 00t + 5 0udjx — 3 0i0u| i D e; D e D ey
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3 Balance equations

Volumetric stress

volumetric part o of stress tensor o

ol =1{c: [[I=3[IxI]:0=T"":0

interpretation of trace as hydrostatic pressure
p=itr(c) =30:1=73(on+ 00+ o)

index representation

vol vol

(o :Uij ei®e]'

matrix representation of coordinates [°!]

1 0 0
1
ol=p|0 10| p=3tlo)
0 0 1

(3.1.27)

(3.1.28)

(3.1.29)

(3.1.30)

volumetric stress tensor 0 is a spherical second order ten-

soras o' = p1I

volumetric stress tensor ¢V°' contains the hydrostatic pres-

sure part of the total stress tensor ¢
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3 Balance equations

Deviatoric stress

deviatoric stress tensor ¢ preserves the volume and con-
taines the remaining part of the total stress tensor ¢

deviatoric part % of the stress tensor o

=00 =01 [I=1":¢ (3.1.31)

index representation

ol = 0V e; @ ej (3.1.32)

matrix representation of coordinates [Uge"]

2011 — 022 — 033 012 013
[Ui‘}“] = 3 021 209 — 011 — 033 013
031 032 2033 — 011 — 02
) (3.1.33)
trace of deviatoric stresss tr (¢9¢)
tr (O'dev) = % :20'11 — 0 — 0'33:
+ 3 [209 — 011 — 053] (3.1.34)
+ 2[2033 — 011 — 0] =0

deviatoric stress tensor c9¢V is a traceless second order ten-
sor as tr (c9¢) = 0

deviatoric stress tensor ¢9¢" contains the hydrostatic pres-
sure free part of the total stress tensor o
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3 Balance equations

Normal-shear decomposition

assume we are interested in the
stress 0, normal to a particular
plane characterized through its
normal n, i.e. the normal pro-
jection of the stress vector £,

on=t,-n=[c"n-n=c":mnn=0c":N (3.135)
normal-shear (tangential) decomposition of stress vector £,
t, =0, + 0y (3.1.36)
normal stress vector — stress in direction of n
oc,=[0":[n@n]ln=0c":[n®nn| (3.1.37)
shear (tangential) stress vector — stress in the plane
o = tob—0oy,=0"n—0': nR®nRmn| (3.1.38)
= oI -n—n@enen=0c":T

amount of shear stress T,
Tl =(ts —00) - (to — ) =ty ty — 2ty -0, +0on-n
(3.1.39)
and thus
t = |lodll = Vo ot =\t to — 02 (3.1.40)

in general, i.e. for an arbitrary direction n, we have normal

and shear contributions to the stress vector, however, three
particular directions {n,;};—1,3 can be identified, for which
t, = 0y, and thus o; = 0, the corresponding {n,;}i—1.3 are
called prinicpal stress directions and {0y }i—123 = {Asi}iz123
are the principal stresses
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3 Balance equations

Principal stresses

assume stress tensor o' to be known at x € B, principal
stresses { A }i—123 and principal stress directions {n,;}i—123
can be derived from solution of special eigenvalue problem
according to §1.1.3

O't Ny = )Lgi Ny [O't — Aai] Ny = 0 (3.1.41)
solution
det (c* — A, I) =0 (3.1.42)

or in terms of roots of characteristic equation
A — I A2+ 11, Ay — 111, =0 (3.1.43)

roots of characteristic equation in terms of principal invari-
ants of o'

I, = tr (o) = Ag1 + Ag2 + Ap3
I, = 3[tr*(0!) — tr (0%)] = Ao2Ao3 + Ae3rer + AriAe
I, = det (o) = A1 Ao2 A3
(3.1.44)
spectral representation of ¢
o 23: Agi Ngi Q Ny (3.1.45)

i=1
principal stresses A,; are purely normal, no shear stress T, in
principal directions, i.e. t,; = ¢, = Asin, and o; = 0 thus
T, =0

due to symmetry of stresses o = ¢, stress tensor posseses
three real eigenvalues {A;}i—123, corresponding eigendi-
rections {n,;}i—1,3 are thus orthogonal n; - ngj = djj
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3 Balance equations

Special case of plane stress
dimensional reduction in case of plane stress with vanishing
stresses 013 = 03 = 031 = O3 = 033 — 0 in out of plane
direction, e.g. for flat sheets

0 =U0jje X ej (3.1.46)

matrix representation of coordinates ||

o1 o012 O
0]l = | 021 02 O (3.1.47)
O 0 O

Voigt representation of stress

three dimensional second order stress tensor o

o =0jje R e (3.1.48)
matrix representation of coordinates [(Ti]']
011 012 013
0ii] = | o1 02 o3 (3.1.49)
] 031 023 033 ]
due to symmetry [0;;] = [0j;] and thus 012 = 021, 023 = 03,

031 = 0713, Stress tensor ¢ contains only six independent com-
ponents 011, 022, 033, 012, 023, 031,it proves convenient to repre-
sent second order tensor ¢ through a vector ¢

t
o = |01, 022, 033, 012, 023, 031 (3.1.50)
vector representation ¢ of stress ¢ in case of plane stress

U = [(711, 022,033, Ulz]t (3-1-51)
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3 Balance equations

3.1.3 Concept of heat flux

the contact heat flux g, at a point x is a scalar of the unit [en-
ergy/time/surface area]

the contact heat flux g, characterizes the energy transport
normal to the tangent plane to an imaginary surface passing
through this point with normal vector n

{ei}i:1,2,3

definition of contact heat flux g,, in analogy to Cauchy’s pos-
tulate, lemma and theorem originally introduced for the mo-
mentum flux in §3.1.2

Cauchy’s postulate

dn = qn (x, 1) (3.1.52)
Cauchy’s lemma
u(x,n) = —qu(x, —n) (3.1.53)

Cauchy’s theorem

the contact heat flux g, can be expressed as linear function
of the surface normal n and the heat flux vector g

Gn = q-n (3.1.54)
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3 Balance equations

Heat flux vector
the vector field g is called heat flux vector

q=qge; (3.1.55)
Cauchy’s theorem

n =q -1 (3.1.56)
index representation

qn = (qiei) - (nje;) = ginjdy = qin; (3.1.57)

geometric interpretation

E

e €2

<

the coordinates g; characterize the heat energy transport through
the planes parallel to the coordinate planes

in continuum mechanics of adiabatic systems the heat flux
vector vanishes identically
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