ME338A
 CONTINUUM MECHANICS

lecture notes 07
tuesday, january 26th, 2010

3 Balance equations

3.1 Basic ideas

- until now:
kinematics, i.e. characterization of deformation of a material body \mathcal{B} without studying its physical cause
- now:
balance equations, i.e. general statements that characterize the cause of cause of the motion of any body \mathcal{B}

basic strategy

- isolation of an arbitrary subset $\overline{\mathcal{B}}$ of the body \mathcal{B}
- characterization of the influence of the remaining body $\mathcal{B} \backslash \overline{\mathcal{B}}$ on $\overline{\mathcal{B}}$ through phenomenological quantities, i.e. the contact mass flux r, the contact stress \boldsymbol{t}_{σ}, the contact heat flux q
- definition of basic physical quantities, i.e. the mass m, the linear momentum I, the moment of momentum D and the energy E of subset $\overline{\mathcal{B}}$
- postulate of balance of these quantities renders global balance equations for subset $\overline{\mathcal{B}}$
- localization of global balance equations renders local balance equations at point $x \in \overline{\mathcal{B}}$

3.1.1 Concept of mass flux

the contact mass flux r_{n} at a point x is a scalar of the unit [mass/time/surface area]
the contact mass flux r_{n} characterizes the transport of matter normal to the tangent plane to an imaginary surface passing through this point with normal vector n

definition of contact heat flux q_{n} in analogy to Cauchy's postulate, lemma and theorem originally introduced for the momentum flux in §3.1.2

Cauchy's postulate

$$
\begin{equation*}
r_{n}=r_{n}(x, n) \tag{3.1.1}
\end{equation*}
$$

Cauchy's lemma

$$
\begin{equation*}
r_{n}(x, n)=-r_{n}(x,-n) \tag{3.1.2}
\end{equation*}
$$

Cauchy's theorem

the contact mass flux r_{n} can be expressed as linear function of the surface normal n and the mass flux vector r

$$
\begin{equation*}
r_{n}=r \cdot n \tag{3.1.3}
\end{equation*}
$$

Mass flux vector

the vector field r is called mass flux vector

$$
\begin{equation*}
\boldsymbol{r}=r_{i} \boldsymbol{e}_{i} \tag{3.1.4}
\end{equation*}
$$

Cauchy's theorem

$$
\begin{equation*}
r_{n}=r \cdot n \tag{3.1.5}
\end{equation*}
$$

index representation

$$
\begin{equation*}
r_{n}=\left(r_{i} \boldsymbol{e}_{i}\right) \cdot\left(n_{j} \boldsymbol{e}_{j}\right)=r_{i} n_{j} \delta_{i j}=r_{i} n_{i} \tag{3.1.6}
\end{equation*}
$$

geometric interpretation

the coordinates r_{i} characterize the transport of matter through the planes parallel to the coordinate planes
in classical closed system continuum mechanics (here) the mass flux vector vanishes identically
examples of mass flux: transport of chemical reactants in chemomechanics or cell migration in biomechanics

3.1.2 Concept of stress

traction vector

$$
\begin{equation*}
\boldsymbol{t}_{\sigma}=\lim _{\Delta a \rightarrow 0} \frac{\Delta f}{\Delta a}=\frac{\mathrm{d} f}{\mathrm{~d} a} \tag{3.1.7}
\end{equation*}
$$

interpretation as surface force per unit surface area
Cauchy's postulate

the traction vector t_{σ} at a point x can be expressed exclusively in terms of the point x and the normal n to the tangent plane to an imaginary surface passing through this point
traction vector

$$
\begin{equation*}
\boldsymbol{t}_{\sigma}=\boldsymbol{t}_{\sigma}(\boldsymbol{x}, \boldsymbol{n}) \tag{3.1.8}
\end{equation*}
$$

Cauchy's lemma

the traction vectors acting on opposite sides of a surface are equal in magnitude and opposite in sign

$$
\begin{equation*}
\boldsymbol{t}_{\sigma 1}\left(\boldsymbol{x}, \boldsymbol{n}_{1}\right)=-\boldsymbol{t}_{\sigma 2}\left(\boldsymbol{x}, \boldsymbol{n}_{2}\right) \tag{3.1.9}
\end{equation*}
$$

generalization with $n=\boldsymbol{n}_{1}=-\boldsymbol{n}_{2}$ and $\boldsymbol{t}_{\sigma}=\boldsymbol{t}_{\sigma 1}$

$$
\begin{equation*}
\boldsymbol{t}_{\sigma}(\boldsymbol{x}, \boldsymbol{n})=-\boldsymbol{t}_{\sigma}(\boldsymbol{x},-\boldsymbol{n}) \tag{3.1.10}
\end{equation*}
$$

Cauchy's theorem

the traction vector t_{σ} can be expressed as a linear map of the surface normal n mapped via the transposed stress tensor σ^{t}

$$
\begin{equation*}
\boldsymbol{t}_{\sigma}=\sigma^{\mathrm{t}} \cdot \boldsymbol{n} \tag{3.1.11}
\end{equation*}
$$

accordingly with $\boldsymbol{n}=\boldsymbol{n}_{1}=-\boldsymbol{n}_{2}$ and $\boldsymbol{t}_{\sigma}=\boldsymbol{t}_{\sigma 1}$

$$
\begin{align*}
& \boldsymbol{t}_{\sigma 1}=\boldsymbol{\sigma}^{\boldsymbol{t}} \cdot \boldsymbol{n}_{1}=\boldsymbol{\sigma}^{\boldsymbol{t}} \cdot \boldsymbol{n}=\boldsymbol{t}_{\sigma} \tag{3.1.12}\\
& \boldsymbol{t}_{\sigma 2}=\boldsymbol{\sigma}^{\mathrm{t}} \cdot \boldsymbol{n}_{2}=-\boldsymbol{\sigma}^{\boldsymbol{t}} \cdot \boldsymbol{n}=-\boldsymbol{t}_{\sigma}
\end{align*}
$$

Cauchy tetraeder
balance of momentum (pointwise)

$$
\begin{equation*}
\boldsymbol{t}_{\sigma}(\boldsymbol{n}) d a=-\boldsymbol{t}_{\sigma}\left(\boldsymbol{n}_{i}\right) d a_{i}=\boldsymbol{t}_{\sigma}\left(\boldsymbol{e}_{i}\right) d a_{i}=\boldsymbol{t}_{\sigma i} d a_{i} \tag{3.1.13}
\end{equation*}
$$

surface theorem, area fractions from Gauss theorem

$$
\begin{equation*}
\boldsymbol{n d a}=-\boldsymbol{n}_{i} d a_{i}=\boldsymbol{e}_{i} d a_{i} \quad \frac{d a_{i}}{d a}=\boldsymbol{e}_{i} \cdot \boldsymbol{n}=\cos \angle\left(\boldsymbol{e}_{i}, \boldsymbol{n}\right) \tag{3.1.14}
\end{equation*}
$$

traction vector as linear map of surface normal

$$
\begin{equation*}
\boldsymbol{t}_{\sigma}(\boldsymbol{n})=\boldsymbol{t}_{\sigma i} \frac{d a_{i}}{d a}=\boldsymbol{t}_{\sigma i} \cos \angle\left(\boldsymbol{e}_{i}, \boldsymbol{n}\right)=\boldsymbol{t}_{\sigma i}\left[\boldsymbol{e}_{\boldsymbol{i}} \cdot \boldsymbol{n}\right]=\left[\boldsymbol{t}_{\sigma i} \otimes \boldsymbol{e}_{\boldsymbol{i}}\right] \cdot \boldsymbol{n} \tag{3.1.15}
\end{equation*}
$$

compare $\boldsymbol{t}_{\sigma}(\boldsymbol{n})=\boldsymbol{\sigma}^{\boldsymbol{t}} \cdot \boldsymbol{n}$
interpretation of second order stress tensor as $\sigma^{\boldsymbol{t}}=\boldsymbol{t}_{\sigma i} \otimes \boldsymbol{e}_{i}$

Stress tensor

Cauchy stress (true stress)

$$
\begin{equation*}
\sigma^{\mathrm{t}}=\boldsymbol{t}_{\sigma i} \otimes \boldsymbol{e}_{i}=\sigma_{j i} \boldsymbol{e}_{i} \otimes \boldsymbol{e}_{j} \quad \sigma=\boldsymbol{e}_{i} \otimes \boldsymbol{t}_{\sigma i}=\sigma_{i j} \boldsymbol{e}_{i} \otimes \boldsymbol{e}_{j} \tag{3.1.16}
\end{equation*}
$$

Cauchy theorem

$$
\begin{equation*}
\boldsymbol{t}_{\sigma}=\boldsymbol{\sigma}^{\mathrm{t}} \cdot \boldsymbol{n} \tag{3.1.17}
\end{equation*}
$$

index representation

$$
\begin{equation*}
\boldsymbol{t}_{\sigma}=\sigma_{j i} \boldsymbol{e}_{i} \otimes \boldsymbol{e}_{j} \cdot n_{k} \boldsymbol{e}_{k}=\sigma_{j i} n_{k} \delta_{j k} \boldsymbol{e}_{i}=\sigma_{j i} n_{j} \boldsymbol{e}_{i}=t_{i} \boldsymbol{e}_{i} \tag{3.1.18}
\end{equation*}
$$

matrix representation of tensor coordinates of $\sigma_{i j}$

$$
\left[\sigma_{i j}\right]=\left[\begin{array}{ccc}
\sigma_{11} & \sigma_{12} & \sigma_{13} \tag{3.1.19}\\
\sigma_{21} & \sigma_{22} & \sigma_{23} \\
\sigma_{31} & \sigma_{32} & \sigma_{33}
\end{array}\right]=\left[\begin{array}{c}
\boldsymbol{t}_{\sigma 1}^{\mathrm{t}} \\
\boldsymbol{t}_{\sigma 2}^{\mathrm{t}} \\
\boldsymbol{t}_{\sigma 3}^{\mathrm{t}}
\end{array}\right]
$$

geometric interpretation

with traction vectors on surfaces

$$
\begin{align*}
\boldsymbol{t}_{\sigma 1} & =\left[\begin{array}{lll}
\sigma_{11} & \sigma_{12} & \sigma_{13}
\end{array}\right]^{\mathrm{t}} \\
\boldsymbol{t}_{\sigma 2} & =\left[\begin{array}{lll}
\sigma_{21} & \sigma_{22} & \sigma_{23}
\end{array}\right]^{\mathrm{t}} \tag{3.1.20}\\
\boldsymbol{t}_{\sigma 3} & =\left[\begin{array}{lll}
\sigma_{31} & \sigma_{32} & \sigma_{33}
\end{array}\right]^{\mathrm{t}}
\end{align*}
$$

first index ... surface normal
second index ... direction (coordinate of traction vector)
diagonal entries ... normal stresses
non-diagonal entries .. shear stresses

