ME338A CONTINUUM MECHANICS

lecture notes 06

thursday, january 21st, 2010

2.3.4 Volumetric-deviatoric decomposition

a material volume element can deform volumetrically and deviatorically, volumetric deformation conserves the shape (i.e. no changes in angles, no sliding) while deviatoric (isochoric) deformation conserves the volume

volumetric – deviatoric decomposition of strain tensor ϵ

$$\boldsymbol{\epsilon} = \boldsymbol{\epsilon}^{\mathrm{vol}} + \boldsymbol{\epsilon}^{\mathrm{dev}} \tag{2.3.24}$$

with volumetric and deviatoric strain tensor $\epsilon^{
m vol}$ and $\epsilon^{
m dev}$

$$\operatorname{tr}(\boldsymbol{\epsilon}^{\operatorname{vol}}) = \operatorname{tr}(\boldsymbol{\epsilon}) \qquad \operatorname{tr}(\boldsymbol{\epsilon}^{\operatorname{dev}}) = 0$$
 (2.3.25)

• volumetric second order tensor $\epsilon^{
m vol}$

$$\boldsymbol{\epsilon}^{\mathrm{vol}} = \frac{1}{3} [\boldsymbol{\epsilon} : \boldsymbol{I}] \, \boldsymbol{I} = \mathbb{I}^{\mathrm{vol}} : \boldsymbol{\epsilon}$$
 (2.3.26)

upon double contraction volumetric fourth order unit tensor II^{vol} extracts volumetric part e^{vol} of strain tensor

$$\mathbf{I}^{\text{vol}} = \frac{1}{3} \mathbf{I} \otimes \mathbf{I}$$

$$\mathbf{I}^{\text{vol}} = \frac{1}{3} \delta_{ij} \delta_{kl} \mathbf{e}_i \otimes \mathbf{e}_j \otimes \mathbf{e}_k \otimes \mathbf{e}_l$$
(2.3.27)

ullet deviatoric second order tensor $m{\epsilon}^{ ext{dev}}$

$$\boldsymbol{\epsilon}^{\text{dev}} = \boldsymbol{\epsilon} - \frac{1}{3} [\boldsymbol{\epsilon} : \boldsymbol{I}] \, \boldsymbol{I} = \mathbb{I}^{\text{dev}} : \boldsymbol{\epsilon}$$
 (2.3.28)

upon double contraction deviatoric fourth order unit tensor II^{dev} extracts deviatoric part of strain tensor

$$\mathbf{I}^{\text{dev}} = \mathbf{I}^{\text{sym}} - \mathbf{I}^{\text{vol}} = \mathbf{I}^{\text{sym}} - \frac{1}{3}\mathbf{I} \otimes \mathbf{I}$$

$$\mathbf{I}^{\text{dev}} = \left[\frac{1}{2}\delta_{ik}\delta_{jl} + \frac{1}{2}\delta_{il}\delta_{jk} - \frac{1}{3}\delta_{ij}\delta_{kl}\right]\mathbf{e}_i \otimes \mathbf{e}_j \otimes \mathbf{e}_k \otimes \mathbf{e}_l$$
 (2.3.29)

Volumetric strain

volumetric deformation is characterized through the volume dilatation $e \in \mathcal{R}$, i.e. difference of deformed volume and original volume dv - dV scaled by original volume dV

$$e = \frac{dv - dV}{dV} = (1 + \epsilon_{11})(1 + \epsilon_{22})(1 + \epsilon_{33}) - 1$$

= $\epsilon_{11} + \epsilon_{22} + \epsilon_{33} + \mathcal{O}(\epsilon_{ij}^2)$ (2.3.30)

neglection of higher order terms: trace of strain tensor tr (ϵ) = $\epsilon : I \in \mathcal{R}$ as characteristic measure for volume changes

$$e = \operatorname{div} u = \nabla u : I = \epsilon : I = \operatorname{tr} (\epsilon)$$
 (2.3.31)

volumetric part ϵ^{vol} of strain tensor ϵ

$$\boldsymbol{\epsilon}^{\mathrm{vol}} = \frac{1}{3} \ \boldsymbol{e} \ \boldsymbol{I} = \frac{1}{3} \ [\boldsymbol{\epsilon} : \boldsymbol{I}] \ \boldsymbol{I} = \frac{1}{3} \ [\boldsymbol{I} \otimes \boldsymbol{I}] : \boldsymbol{\epsilon} = \mathbb{I}^{\mathrm{vol}} : \boldsymbol{\epsilon} \quad (2.3.32)$$

index representation

$$\boldsymbol{\epsilon}^{\mathrm{vol}} = \boldsymbol{\epsilon}_{ij}^{\mathrm{vol}} \, \boldsymbol{e}_i \otimes \boldsymbol{e}_j \tag{2.3.33}$$

matrix representation of coordinates $[\epsilon_{ij}^{\text{vol}}]$

$$[\epsilon_{ij}^{\text{vol}}] = \frac{1}{3} e \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \qquad e = \operatorname{tr}(\epsilon) \qquad (2.3.34)$$

• incompressibility is characterized through div u = 0

• volumetric strain tensor e^{vol} is a spherical second order tensor as $e^{\text{vol}} = \frac{1}{3}eI$

• volumetric strain tensor e^{vol} contains the volume changing, shape preserving part of the total strain tensor e

Deviatoric strain

deviatoric strain tensor e^{dev} preserves the volume and contains the remaining part of the total strain tensor e

deviatoric part ϵ^{dev} of the strain tensor ϵ

$$\boldsymbol{\epsilon}^{\text{dev}} = \boldsymbol{\epsilon} - \boldsymbol{\epsilon}^{\text{vol}} = \boldsymbol{\epsilon} - \frac{1}{3} \left[\boldsymbol{\epsilon} : \boldsymbol{I} \right] \boldsymbol{I} = \mathbb{I}^{\text{dev}} : \boldsymbol{\epsilon}$$
 (2.3.35)

index representation

$$\boldsymbol{\epsilon}^{\text{dev}} = \boldsymbol{\epsilon}_{ij}^{\text{dev}} \, \boldsymbol{e}_i \otimes \boldsymbol{e}_j \tag{2.3.36}$$

matrix representation of coordinates $[\epsilon_{ij}^{\text{dev}}]$

$$[\epsilon_{ij}^{\text{dev}}] = \begin{bmatrix} \frac{1}{3} [2\epsilon_{11} - \epsilon_{22} - \epsilon_{33}] & \epsilon_{12} & \epsilon_{13} \\ & \epsilon_{21} & \frac{1}{3} [2\epsilon_{22} - \epsilon_{11} - \epsilon_{33}] & \epsilon_{13} \\ & \epsilon_{31} & \epsilon_{32} & \frac{1}{3} [2\epsilon_{33} - \epsilon_{11} - \epsilon_{22}] \end{bmatrix}$$

$$(2.3.37)$$

trace of deviatoric strains tr $(m{\epsilon}^{
m dev})$

$$\operatorname{tr}(\boldsymbol{\epsilon}^{\operatorname{dev}}) = \frac{1}{3} [2\epsilon_{11} - \epsilon_{22} - \epsilon_{33}] + \frac{1}{3} [2\epsilon_{22} - \epsilon_{11} - \epsilon_{33}] + \frac{1}{3} [2\epsilon_{33} - \epsilon_{11} - \epsilon_{22}] = 0$$
(2.3.38)

• deviatoric strain tensor e^{dev} is a traceless second order tensor as tr $(e^{dev}) = 0$

• deviatoric strain tensor e^{dev} contains the shape changing, volume preserving part of the total strain tensor e

Volumetric-deviatoric decomposition

• examples of purely volumetric deformation

$$\boldsymbol{\epsilon}^{\mathrm{vol}} = \frac{1}{3} [\boldsymbol{\epsilon} : \boldsymbol{I}] \, \boldsymbol{I} = \mathbb{I}^{\mathrm{vol}} : \boldsymbol{\epsilon} \qquad \mathrm{tr}(\boldsymbol{\epsilon}^{\mathrm{vol}}) = \mathrm{tr}(\boldsymbol{\epsilon}) \qquad (2.3.39)$$

$$e < 0$$
 and $\epsilon^{dev} = 0$

• examples of purely deviatoric deformation

 $e^{\text{dev}} = e - \frac{1}{3} [e:I] I = \mathbb{I}^{\text{dev}} : e \qquad \text{tr}(e^{\text{dev}}) = 0 \quad (2.3.40)$ pure shear $f = 0 \text{ and } e^{\text{dev}} \neq 0$ $e = 0 \text{ and } e^{\text{dev}} \neq 0$ $e = 0 \text{ and } e^{\text{dev}} \neq 0$

2.3.5 Strain vector

assume we are interested in strain on a plane characterized through its normal n, strain vector t_{ϵ} acting on plane given through normal projection of strain tensor ϵ

$$t_{\epsilon} = \epsilon \cdot n$$

index representation

$$t_{\epsilon} = (\epsilon_{ij} e_i \otimes e_j) \cdot (n_k e_k)$$

= $\epsilon_{ij} n_k \delta_{jk} e_i = \epsilon_{ij} n_j e_i = t_{\epsilon i} e_i$ (2.3.42)

representation of coordinates $[t_{\epsilon i}]$

$$\begin{bmatrix} t_{\epsilon 1} \\ t_{\epsilon 2} \\ t_{\epsilon 3} \end{bmatrix} = \begin{bmatrix} \epsilon_{11} n_1 + \epsilon_{12} n_2 + \epsilon_{13} n_3 \\ \epsilon_{21} n_1 + \epsilon_{22} n_2 + \epsilon_{23} n_3 \\ \epsilon_{31} n_1 + \epsilon_{32} n_2 + \epsilon_{33} n_3 \end{bmatrix}$$
(2.3.43)

alternative interpretation: assume we are interested in strains along a particular material direction, i.e. the stretch of a fiber at $x \in \mathcal{B}$ characterized through its normal n with ||n|| = 1

stretch as change of displacement vector *u* in the direction of *n* given through the Gateaux derivative §??

$$D u(x) \cdot n = \frac{d}{d\epsilon} u(x + \epsilon n)|_{\epsilon=0}$$

= $\underbrace{\nabla u(x + \epsilon n)}_{\text{outer derviative}} \cdot \underbrace{n}_{\text{inner derivative}}|_{\epsilon=0} = \nabla u(x) \cdot n$ (2.3.44)

recall that $\nabla u = \nabla^{\text{sym}} u + \nabla^{\text{skw}} u = \epsilon + \omega$ whereby rotation $\omega = \nabla^{\text{skw}} u$ does not induce strain, thus

$$\boldsymbol{t}_{\boldsymbol{\epsilon}} = \nabla^{\mathrm{sym}} \boldsymbol{u} \cdot \boldsymbol{n} = \boldsymbol{\epsilon} \cdot \boldsymbol{n} \tag{2.3.45}$$

2.3.6 Normal–shear decomposition

assume we are interested in strain along a particular fiber characterized through its normal n, stretch of fiber ϵ_n given through normal projection of strain vector t_{ϵ}

$$= t_{\epsilon} \cdot n \tag{2.3.46}$$

alternative interpretation: stretch of a line element can be understood as the projection of change of displacement in the direction of *n* as $Du \cdot n = \nabla u \cdot n$ onto the direction *n*

$$\boldsymbol{\epsilon}_n = \boldsymbol{n} \cdot \nabla \boldsymbol{u} \cdot \boldsymbol{n} = \boldsymbol{n} \cdot \boldsymbol{\epsilon} \cdot \boldsymbol{n} = \boldsymbol{\epsilon} : [\boldsymbol{n} \otimes \boldsymbol{n}]$$
(2.3.47)

normal-shear (tangential) decomposition of strain vector t_{ϵ}

$$\boldsymbol{t}_{\boldsymbol{\epsilon}} = \boldsymbol{\epsilon}_n + \boldsymbol{\epsilon}_t \tag{2.3.48}$$

normal strain vector – stretch of fibers in direction of n

$$\boldsymbol{\epsilon}_n = \boldsymbol{\epsilon} : [\boldsymbol{n} \otimes \boldsymbol{n}] \, \boldsymbol{n} \tag{2.3.49}$$

shear (tangential) strain vector – sliding of fibers parallel to *n*

$$\boldsymbol{\epsilon}_t = \boldsymbol{t}_{\boldsymbol{\epsilon}} - \boldsymbol{\epsilon}_n = \boldsymbol{\epsilon} : [\mathbb{I}^{\text{sym}} \cdot \boldsymbol{n} - \boldsymbol{n} \otimes \boldsymbol{n} \otimes \boldsymbol{n}]$$
(2.3.50)

amount of sliding γ_n

 ϵ_n

$$\gamma_n = 2 ||\boldsymbol{\epsilon}_t|| = 2 \sqrt{\boldsymbol{\epsilon}_t \cdot \boldsymbol{\epsilon}_t} = 2 \sqrt{\boldsymbol{t}_{\varepsilon} \cdot \boldsymbol{t}_{\varepsilon} - \boldsymbol{\epsilon}_n^2}$$
(2.3.51)

in general, i.e. for an arbitrary direction n, we have normal and shear contributions to the strain vector, however, three particular directions $\{n_{\epsilon i}\}_{i=1,2,3}$ can be identified, for which $t_{\epsilon} = \epsilon_n$ and thus $\epsilon_t = 0$, the corresponding $\{n_{\epsilon i}\}_{i=1,2,3}$ are called principal strain directions and $\{\epsilon_{n i}\}_{i=1,2,3} = \{\lambda_{\epsilon i}\}_{i=1,2,3}$ are the principal strains or stretches

2.3.7 Principal strains – stretches

assume strain tensor ϵ to be known at $x \in \mathcal{B}$, principal strains $\{\lambda_{\epsilon i}\}_{i=1,2,3}$ and principal strain directions $\{n_{\epsilon i}\}_{i=1,2,3}$ can be derived from solution of special eigenvalue problem according to §1.1.3

$$\boldsymbol{\epsilon} \cdot \boldsymbol{n}_{\epsilon i} = \lambda_{\epsilon i} \, \boldsymbol{n}_{\epsilon i} \qquad [\,\boldsymbol{\epsilon} - \lambda_{\epsilon i}\,] \cdot \boldsymbol{n}_{\epsilon i} = \boldsymbol{0} \tag{2.3.52}$$

solution

$$\det\left(\boldsymbol{\epsilon} - \lambda_{\boldsymbol{\epsilon}} \boldsymbol{I}\right) = 0 \tag{2.3.53}$$

or in terms of roots of characteristic equation

$$\lambda_{\epsilon}^{3} - I_{\epsilon} \lambda_{\epsilon}^{2} + II_{\epsilon} \lambda_{\epsilon} - III_{\epsilon} = 0$$
(2.3.54)

roots of characteristic equations in terms of principal invariants of $\boldsymbol{\epsilon}$

$$I_{\epsilon} = \operatorname{tr}(\epsilon) = \lambda_{\epsilon 1} + \lambda_{\epsilon 2} + \lambda_{\epsilon 3}$$

$$II_{\epsilon} = \frac{1}{2}[\operatorname{tr}^{2}(\epsilon) - \operatorname{tr}(\epsilon^{2})] = \lambda_{\epsilon 2}\lambda_{\epsilon 3} + \lambda_{\epsilon 3}\lambda_{\epsilon 1} + \lambda_{\epsilon 1}\lambda_{\epsilon 2} \quad (2.3.55)$$

$$III_{\epsilon} = \operatorname{det}(\epsilon) = \lambda_{\epsilon 1}\lambda_{\epsilon 2}\lambda_{\epsilon 3}$$

spectral representation of ϵ

$$\boldsymbol{\epsilon} = \sum_{i=1}^{3} \lambda_{\epsilon i} \, \boldsymbol{n}_{\epsilon i} \otimes \boldsymbol{n}_{\epsilon i} \tag{2.3.56}$$

principal strains (stretches) $\lambda_{\epsilon i}$ are purely normal, no shear deformation (sliding) γ_n in principal directions, i.e. $t_{\epsilon i} = \epsilon_n = \lambda_{\epsilon i} n_{\epsilon i}$ and $\epsilon_t = 0$ thus $\gamma_n = 0$

due to symmetry of strains $\epsilon = \epsilon^{t}$, strain tensor possesses three real eigenvalues $\{\lambda_{\epsilon i}\}_{i=1,2,3}$, corresponding eigendirections $\{n_{\epsilon i}\}_{i=1,2,3}$ are thus orthogonal $n_{\epsilon i} \cdot n_{\epsilon j} = \delta_{ij}$

2.3.8 Compatibility

until now, we have assumed the displacement field u(x, t) to be given, such that the strain field $\epsilon = \nabla^{\text{sym}} u$ could have been derived uniquely as partial derivative of u with respect to the position x at fixed time t

assume now, that for a given strain field $\epsilon(x, t)$, we want to know whether these strains ϵ are compatible with a continuous single–valued displacement field u

symmetric second order incompatibility tensor

$$\eta = \operatorname{crl}(\operatorname{crl}(\epsilon)) \tag{2.3.57}$$

index representation of incompatibility tensor

$$\boldsymbol{\eta} = \eta_{ij} \boldsymbol{e}_i \otimes \boldsymbol{e}_j = \stackrel{3}{e}_{ikm} \boldsymbol{\epsilon}_{kn,ml} \stackrel{3}{e}_{jln} \boldsymbol{e}_i \otimes \boldsymbol{e}_j = \boldsymbol{0}$$
(2.3.58)

coordinate representation of compatibility condition

$$\epsilon_{kl,mn} + \epsilon_{mn,kl} - \epsilon_{ml,kn} - \epsilon_{kn,ml} = 0 \tag{2.3.59}$$

valid \forall *k*, *l*, *m*, *n*, thus 81 equations which are partly redundant, six independent conditions

St. Venant compatibility conditions

$$\eta_{11} = \epsilon_{22,33} + \epsilon_{33,22} - 2\epsilon_{23,32} = 0$$

$$\eta_{22} = \epsilon_{33,11} + \epsilon_{11,33} - 2\epsilon_{31,13} = 0$$

$$\eta_{33} = \epsilon_{11,22} + \epsilon_{22,11} - 2\epsilon_{12,21} = 0$$

$$\eta_{12} = \epsilon_{13,32} + \epsilon_{23,31} - \epsilon_{33,12} - \epsilon_{12,33} = 0$$

$$\eta_{23} = \epsilon_{21,13} + \epsilon_{31,12} - \epsilon_{11,23} - \epsilon_{23,11} = 0$$

$$\eta_{31} = \epsilon_{32,21} + \epsilon_{12,23} - \epsilon_{22,31} - \epsilon_{31,22} = 0$$
(2.3.60)

incompatible displacement field, e.g. in dislocation theory

2.3.9 Special case of plane strain

dimensional reduction in case of plane strain with vanishing strains $\epsilon_{13} = \epsilon_{23} = \epsilon_{31} = \epsilon_{32} = \epsilon_{33} = 0$ in out of plane direction, e.g. in geomechanics

$$\boldsymbol{\epsilon} = \boldsymbol{\epsilon}_{ij} \, \boldsymbol{e}_i \otimes \boldsymbol{e}_j \tag{2.3.61}$$

matrix representation of coordinates $[\epsilon_{ij}]$

$$[\epsilon_{ij}] = \begin{bmatrix} \epsilon_{11} & \epsilon_{12} & 0 \\ \epsilon_{21} & \epsilon_{22} & 0 \\ 0 & 0 & 0 \end{bmatrix}$$
(2.3.62)

2.3.10 Voigt representation of strain

three dimensional second order strain tensor ϵ

$$\boldsymbol{\epsilon} = \boldsymbol{\epsilon}_{ij} \, \boldsymbol{e}_i \otimes \boldsymbol{e}_j \tag{2.3.63}$$

matrix representation of coordinates $[\epsilon_{ij}]$

$$[\epsilon_{ij}] = \begin{bmatrix} \epsilon_{11} & \epsilon_{12} & \epsilon_{13} \\ \epsilon_{21} & \epsilon_{22} & \epsilon_{23} \\ \epsilon_{31} & \epsilon_{23} & \epsilon_{33} \end{bmatrix}$$
(2.3.64)

due to symmetry $[\epsilon_{ij}] = [\epsilon_{ji}]$ and thus $\epsilon_{12} = \epsilon_{21}$, $\epsilon_{23} = \epsilon_{32}$, $\epsilon_{31} = \epsilon_{13}$, strain tensor ϵ contains only six independent components ϵ_{11} , ϵ_{22} , ϵ_{33} , ϵ_{12} , ϵ_{23} , ϵ_{31} , it proves convenient to represent second order tensor ϵ through a vector ϵ

$$\underline{\epsilon} = [\epsilon_{11}, \epsilon_{22}, \epsilon_{33}, 2\epsilon_{12}, 2\epsilon_{23}, 2\epsilon_{31}]^{t}$$
(2.3.65)

vector representation $\underline{\epsilon}$ of strain ϵ in case of plane strain

$$\underline{\epsilon} = [\epsilon_{11}, \epsilon_{22}, 2\epsilon_{12}]^{t}$$
(2.3.66)