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2 Kinematics

2.3.4 Volumetric–deviatoric decomposition

a material volume element can deform volumetrically and

deviatorically, volumetric deformation conserves the shape

(i.e. no changes in angles, no sliding) while deviatoric (iso-

choric) deformation conserves the volume

volumetric – deviatoric decomposition of strain tensor ǫ

ǫ = ǫvol + ǫdev (2.3.24)

with volumetric and deviatoric strain tensor ǫvol and ǫdev

tr(ǫvol) = tr(ǫ) tr(ǫdev) = 0 (2.3.25)

• volumetric second order tensor ǫvol

ǫvol =
1

3
[ǫ : I] I = IIvol : ǫ (2.3.26)

upon double contraction volumetric fourth order unit tensor

IIvol extracts volumetric part ǫvol of strain tensor

IIvol = 1
3 I ⊗ I

IIvol = 1
3 δijδkl ei ⊗ ej ⊗ ek ⊗ el

(2.3.27)

• deviatoric second order tensor ǫdev

ǫdev = ǫ − 1

3
[ǫ : I] I = IIdev : ǫ (2.3.28)

upon double contraction deviatoric fourth order unit tensor

IIdev extracts deviatoric part of strain tensor

IIdev = IIsym − IIvol = IIsym − 1
3 I ⊗ I

IIdev =
[

1
2 δikδjl +

1
2 δilδjk − 1

3 δijδkl

]
ei ⊗ ej ⊗ ek ⊗ el

(2.3.29)

49



2 Kinematics

Volumetric strain

volumetric deformation is characterized through the volume

dilatation e ∈ R, i.e. difference of deformed volume and

original volume dv − dV scaled by original volume dV

e =
dv − dV

dV
= (1 + ǫ11)(1 + ǫ22)(1 + ǫ33) − 1

= ǫ11 + ǫ22 + ǫ33 +O(ǫ2
ij)

(2.3.30)

neglection of higher order terms: trace of strain tensor tr (ǫ) =

ǫ : I ∈ R as characteristic measure for volume changes

e = div u = ∇u : I = ǫ : I = tr (ǫ) (2.3.31)

volumetric part ǫvol of strain tensor ǫ

ǫvol = 1
3 e I = 1

3 [ǫ : I] I = 1
3 [I ⊗ I] : ǫ = IIvol : ǫ (2.3.32)

index representation

ǫvol = ǫvol
ij ei ⊗ ej (2.3.33)

matrix representation of coordinates [ǫvol
ij ]

[ǫvol
ij ] = 1

3
e








1 0 0

0 1 0

0 0 1








e = tr(ǫ) (2.3.34)

• incompressibility is characterized through div u = 0

• volumetric strain tensor ǫvol is a spherical second order

tensor as ǫvol = 1
3eI

• volumetric strain tensor ǫvol contains the volume chang-

ing, shape preserving part of the total strain tensor ǫ
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2 Kinematics

Deviatoric strain

deviatoric strain tensor ǫdev preserves the volume and con-

tains the remaining part of the total strain tensor ǫ

deviatoric part ǫdev of the strain tensor ǫ

ǫdev = ǫ − ǫvol = ǫ − 1
3

[ǫ : I] I = IIdev : ǫ (2.3.35)

index representation

ǫdev = ǫdev
ij ei ⊗ ej (2.3.36)

matrix representation of coordinates [ǫdev
ij ]

[ǫdev
ij ] =








1
3[2ǫ11 − ǫ22 − ǫ33] ǫ12 ǫ13

ǫ21
1
3[2ǫ22 − ǫ11 − ǫ33] ǫ13

ǫ31 ǫ32
1
3[2ǫ33 − ǫ11 − ǫ22]








(2.3.37)

trace of deviatoric strains tr (ǫdev)

tr (ǫdev) = 1
3 [2ǫ11 − ǫ22 − ǫ33]

+ 1
3 [2ǫ22 − ǫ11 − ǫ33]

+ 1
3 [2ǫ33 − ǫ11 − ǫ22] = 0

(2.3.38)

• deviatoric strain tensor ǫdev is a traceless second order ten-

sor as tr (ǫdev) = 0

• deviatoric strain tensor ǫdev contains the shape changing,

volume preserving part of the total strain tensor ǫ
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2 Kinematics

Volumetric–deviatoric decomposition

• examples of purely volumetric deformation

ǫvol =
1

3
[ǫ : I] I = IIvol : ǫ tr(ǫvol) = tr(ǫ) (2.3.39)

expansion compression

e > 0 and ǫdev = 0 e < 0 and ǫdev = 0

• examples of purely deviatoric deformation

ǫdev = ǫ − 1

3
[ǫ : I] I = IIdev : ǫ tr(ǫdev) = 0 (2.3.40)

α

β

γ = α + β

pure shear simple shear

e = 0 and ǫdev 6= 0 e = 0 and ǫdev 6= 0
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2 Kinematics

2.3.5 Strain vector

assume we are interested in strain

on a plane characterized through

its normal n, strain vector tǫ acting

on plane given through normal pro-

jection of strain tensor ǫ

ǫn

ǫt

tǫ

n

tǫ = ǫ · n (2.3.41)

index representation

tǫ = (ǫij ei ⊗ ej) · (nk ek)

= ǫij nkδjk ei = ǫij nj ei = tǫi ei

(2.3.42)

representation of coordinates [tǫi]







tǫ1

tǫ2

tǫ3








=








ǫ11 n1 + ǫ12 n2 + ǫ13 n3

ǫ21 n1 + ǫ22 n2 + ǫ23 n3

ǫ31 n1 + ǫ32 n2 + ǫ33 n3








(2.3.43)

alternative interpretation: assume we are interested in strains

along a particular material direction, i.e. the stretch of a fiber

at x ∈ B characterized through its normal n with ||n|| = 1

stretch as change of displacement vector u in the direction

of n given through the Gateaux derivative §??

D u(x) · n = d
dǫ

u(x + ǫ n)|ǫ=0

= ∇u(x + ǫ n)
︸ ︷︷ ︸

outer derviative

· n
︸︷︷︸

inner derivative

|ǫ=0 = ∇u(x) · n
(2.3.44)

recall that ∇u = ∇symu + ∇skwu = ǫ + ω whereby rotation

ω = ∇skwu does not induce strain, thus

tǫ = ∇symu · n = ǫ · n (2.3.45)
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2 Kinematics

2.3.6 Normal–shear decomposition

assume we are interested in strain

along a particular fiber characterized

through its normal n, stretch of

fiber ǫn given through normal pro-

jection of strain vector tǫ

ǫn

ǫt

tǫ

n

ǫn = tǫ · n (2.3.46)

alternative interpretation: stretch of a line element can be

understood as the projection of change of displacement in

the direction of n as Du · n = ∇u · n onto the direction n

ǫn = n · ∇u · n = n · ǫ · n = ǫ : [n ⊗ n] (2.3.47)

normal-shear (tangential) decomposition of strain vector tǫ

tǫ = ǫn + ǫt (2.3.48)

normal strain vector – stretch of fibers in direction of n

ǫn = ǫ : [n ⊗ n] n (2.3.49)

shear (tangential) strain vector – sliding of fibers parallel to n

ǫt = tǫ − ǫn = ǫ : [IIsym · n − n ⊗ n ⊗ n] (2.3.50)

amount of sliding γn

γn = 2 ||ǫt|| = 2
√

ǫt · ǫt = 2
√

tǫ · tǫ − ǫ2
n (2.3.51)

in general, i.e. for an arbitrary direction n, we have normal

and shear contributions to the strain vector, however, three

particular directions {nǫ i}i=1,2,3 can be identified, for which

tǫ = ǫn and thus ǫt = 0, the corresponding {nǫ i}i=1,2,3 are

called principal strain directions and {ǫn i}i=1,2,3 = {λǫi}i=1,2,3

are the principal strains or stretches
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2 Kinematics

2.3.7 Principal strains – stretches

assume strain tensor ǫ to be known at x ∈ B, principal

strains {λǫ i}i=1,2,3 and principal strain directions {nǫ i}i=1,2,3

can be derived from solution of special eigenvalue problem

according to §1.1.3

ǫ · nǫ i = λǫ i nǫ i [ ǫ − λǫ i ] · nǫ i = 0 (2.3.52)

solution

det (ǫ − λǫ I) = 0 (2.3.53)

or in terms of roots of characteristic equation

λ3
ǫ − Iǫ λ2

ǫ + I Iǫ λǫ − I I Iǫ = 0 (2.3.54)

roots of characteristic equations in terms of principal invari-

ants of ǫ

Iǫ = tr (ǫ) = λǫ1 + λǫ2 + λǫ3

I Iǫ = 1
2[tr

2(ǫ) − tr (ǫ2)] = λǫ2λǫ3 + λǫ3λǫ1 + λǫ1λǫ2

I I Iǫ = det (ǫ) = λǫ1 λǫ2 λǫ3

(2.3.55)

spectral representation of ǫ

ǫ =
3

∑
i=1

λǫi nǫi ⊗ nǫi (2.3.56)

principal strains (stretches) λǫi are purely normal, no shear

deformation (sliding) γn in principal directions, i.e. tǫi =

ǫn = λǫi nǫi and ǫt = 0 thus γn = 0

due to symmetry of strains ǫ = ǫt, strain tensor possesses

three real eigenvalues {λǫ i}i=1,2,3, corresponding eigendirec-

tions {nǫ i}i=1,2,3 are thus orthogonal nǫi · nǫj = δij
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2 Kinematics

2.3.8 Compatibility

until now, we have assumed the displacement field u(x, t)

to be given, such that the strain field ǫ = ∇symu could have

been derived uniquely as partial derivative of u with respect

to the position x at fixed time t

assume now, that for a given strain field ǫ(x, t), we want to

know whether these strains ǫ are compatible with a contin-

uous single–valued displacement field u

symmetric second order incompatibility tensor

η = crl(crl(ǫ)) (2.3.57)

index representation of incompatibility tensor

η = ηijei ⊗ ej =
3
eikm ǫkn,ml

3
ejln ei ⊗ ej = 0 (2.3.58)

coordinate representation of compatibility condition

ǫkl,mn + ǫmn,kl − ǫml,kn − ǫkn,ml = 0 (2.3.59)

valid ∀ k, l, m, n, thus 81 equations which are partly redun-

dant, six independent conditions

St. Venant compatibility conditions

η11 = ǫ22,33 + ǫ33,22 − 2 ǫ23,32 = 0

η22 = ǫ33,11 + ǫ11,33 − 2 ǫ31,13 = 0

η33 = ǫ11,22 + ǫ22,11 − 2 ǫ12,21 = 0

η12 = ǫ13,32 + ǫ23,31 − ǫ33,12 − ǫ12,33 = 0

η23 = ǫ21,13 + ǫ31,12 − ǫ11,23 − ǫ23,11 = 0

η31 = ǫ32,21 + ǫ12,23 − ǫ22,31 − ǫ31,22 = 0

(2.3.60)

incompatible displacement field, e.g. in dislocation theory
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2 Kinematics

2.3.9 Special case of plane strain

dimensional reduction in case of plane strain with vanishing

strains ǫ13 = ǫ23 = ǫ31 = ǫ32 = ǫ33 = 0 in out of plane

direction, e.g. in geomechanics

ǫ = ǫij ei ⊗ ej (2.3.61)

matrix representation of coordinates [ǫij]

[ǫij] =








ǫ11 ǫ12 0

ǫ21 ǫ22 0

0 0 0








(2.3.62)

2.3.10 Voigt representation of strain

three dimensional second order strain tensor ǫ

ǫ = ǫij ei ⊗ ej (2.3.63)

matrix representation of coordinates [ǫij]

[ǫij] =








ǫ11 ǫ12 ǫ13

ǫ21 ǫ22 ǫ23

ǫ31 ǫ23 ǫ33








(2.3.64)

due to symmetry [ǫij] = [ǫji] and thus ǫ12 = ǫ21, ǫ23 = ǫ32,

ǫ31 = ǫ13, strain tensor ǫ contains only six independent com-

ponents ǫ11, ǫ22, ǫ33, ǫ12, ǫ23, ǫ31,it proves convenient to repre-

sent second order tensor ǫ through a vector ǫ

ǫ = [ǫ11, ǫ22, ǫ33, 2 ǫ12, 2 ǫ23, 2 ǫ31]
t (2.3.65)

vector representation ǫ of strain ǫ in case of plane strain

ǫ = [ǫ11, ǫ22, 2 ǫ12]
t (2.3.66)
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