ME338A
 CONTINUUM MECHANICS

lecture notes 06
thursday, january 21st, 2010

2.3.4 Volumetric-deviatoric decomposition

a material volume element can deform volumetrically and deviatorically, volumetric deformation conserves the shape (i.e. no changes in angles, no sliding) while deviatoric (isochoric) deformation conserves the volume
volumetric - deviatoric decomposition of strain tensor $\boldsymbol{\epsilon}$

$$
\begin{equation*}
\boldsymbol{\epsilon}=\boldsymbol{\epsilon}^{\mathrm{vol}}+\boldsymbol{\epsilon}^{\mathrm{dev}} \tag{2.3.24}
\end{equation*}
$$

with volumetric and deviatoric strain tensor ϵ^{vol} and ϵ^{dev}

$$
\begin{equation*}
\operatorname{tr}\left(\boldsymbol{\epsilon}^{\mathrm{vol}}\right)=\operatorname{tr}(\boldsymbol{\epsilon}) \quad \operatorname{tr}\left(\boldsymbol{\epsilon}^{\mathrm{dev}}\right)=0 \tag{2.3.25}
\end{equation*}
$$

- volumetric second order tensor ϵ^{vol}

$$
\begin{equation*}
\epsilon^{\mathrm{vol}}=\frac{1}{3}[\boldsymbol{\epsilon}: \boldsymbol{I}] \boldsymbol{I}=\mathbb{I}^{\mathrm{vol}}: \epsilon \tag{2.3.26}
\end{equation*}
$$

upon double contraction volumetric fourth order unit tensor II $^{\text {vol }}$ extracts volumetric part ϵ^{vol} of strain tensor

$$
\begin{align*}
& \mathbb{I}^{\mathrm{vol}}=\frac{1}{3} \boldsymbol{I} \otimes \boldsymbol{I} \\
& \mathbb{I}^{\mathrm{vol}}=\frac{1}{3} \delta_{i j} \delta_{k l} \boldsymbol{e}_{i} \otimes \boldsymbol{e}_{j} \otimes \boldsymbol{e}_{k} \otimes \boldsymbol{e}_{l} \tag{2.3.27}
\end{align*}
$$

- deviatoric second order tensor $\boldsymbol{\epsilon}^{\mathrm{dev}}$

$$
\begin{equation*}
\epsilon^{\mathrm{dev}}=\epsilon-\frac{1}{3}[\epsilon: I] I=\mathbb{I}^{\mathrm{dev}}: \epsilon \tag{2.3.28}
\end{equation*}
$$

upon double contraction deviatoric fourth order unit tensor $I I^{\text {dev }}$ extracts deviatoric part of strain tensor

$$
\begin{align*}
\mathbb{I}^{\mathrm{dev}} & =\mathbb{I}^{\mathrm{sym}}-\mathbb{I}^{\mathrm{vol}}=\mathbb{I}^{\text {sym }}-\frac{1}{3} \boldsymbol{I} \otimes \boldsymbol{I} \tag{2.3.29}\\
\mathbb{I}^{\mathrm{dev}} & =\left[\frac{1}{2} \delta_{i k} \delta_{j l}+\frac{1}{2} \delta_{i l} \delta_{j k}-\frac{1}{3} \delta_{i j} \delta_{k l}\right] \boldsymbol{e}_{i} \otimes \boldsymbol{e}_{j} \otimes \boldsymbol{e}_{k} \otimes \boldsymbol{e}_{l}
\end{align*}
$$

Volumetric strain

volumetric deformation is characterized through the volume dilatation $e \in \mathcal{R}$, i.e. difference of deformed volume and original volume $\mathrm{d} v-\mathrm{d} V$ scaled by original volume $\mathrm{d} V$

$$
\begin{align*}
e=\frac{\mathrm{d} v-\mathrm{d} V}{\mathrm{~d} V} & =\left(1+\epsilon_{11}\right)\left(1+\epsilon_{22}\right)\left(1+\epsilon_{33}\right)-1 \tag{2.3.30}\\
& =\epsilon_{11}+\epsilon_{22}+\epsilon_{33}+\mathcal{O}\left(\epsilon_{i j}^{2}\right)
\end{align*}
$$

neglection of higher order terms: trace of strain tensor $\operatorname{tr}(\boldsymbol{\epsilon})=$ $\epsilon: I \in \mathcal{R}$ as characteristic measure for volume changes

$$
\begin{equation*}
e=\operatorname{div} u=\nabla u: I=\boldsymbol{\epsilon}: I=\operatorname{tr}(\epsilon) \tag{2.3.31}
\end{equation*}
$$

volumetric part ϵ^{vol} of strain tensor $\boldsymbol{\epsilon}$

$$
\begin{equation*}
\boldsymbol{\epsilon}^{\mathrm{vol}}=\frac{1}{3} e \boldsymbol{I}=\frac{1}{3}[\boldsymbol{\epsilon}: \boldsymbol{I}] \boldsymbol{I}=\frac{1}{3}[\boldsymbol{I} \otimes \boldsymbol{I}]: \boldsymbol{\epsilon}=\mathbb{I}^{\mathrm{vol}}: \boldsymbol{\epsilon} \tag{2.3.32}
\end{equation*}
$$

index representation

$$
\begin{equation*}
\boldsymbol{\epsilon}^{\mathrm{vol}}=\epsilon_{i j}^{\mathrm{vol}} \boldsymbol{e}_{i} \otimes \boldsymbol{e}_{j} \tag{2.3.33}
\end{equation*}
$$

matrix representation of coordinates $\left[\epsilon_{i j}^{\mathrm{vol}}\right]$

$$
\left[\epsilon_{i j}^{\mathrm{vol}}\right]=\frac{1}{3} e\left[\begin{array}{lll}
1 & 0 & 0 \tag{2.3.34}\\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \quad e=\operatorname{tr}(\boldsymbol{\epsilon})
$$

- incompressibility is characterized through div $u=0$
- volumetric strain tensor $\boldsymbol{\epsilon}^{\mathrm{vol}}$ is a spherical second order tensor as $\boldsymbol{\epsilon}^{\mathrm{vol}}=\frac{1}{3} e \boldsymbol{I}$
- volumetric strain tensor ϵ^{vol} contains the volume changing, shape preserving part of the total strain tensor $\boldsymbol{\epsilon}$

Deviatoric strain

deviatoric strain tensor $\boldsymbol{\epsilon}^{\text {dev }}$ preserves the volume and contains the remaining part of the total strain tensor $\boldsymbol{\epsilon}$ deviatoric part $\boldsymbol{\epsilon}^{\mathrm{dev}}$ of the strain tensor $\boldsymbol{\epsilon}$

$$
\begin{equation*}
\epsilon^{\mathrm{dev}}=\boldsymbol{\epsilon}-\boldsymbol{\epsilon}^{\mathrm{vol}}=\boldsymbol{\epsilon}-\frac{1}{3}[\boldsymbol{\epsilon}: \boldsymbol{I}] \boldsymbol{I}=\mathbb{I}^{\mathrm{dev}}: \boldsymbol{\epsilon} \tag{2.3.35}
\end{equation*}
$$

index representation

$$
\begin{equation*}
\boldsymbol{\epsilon}^{\mathrm{dev}}=\epsilon_{i j}^{\mathrm{dev}} \boldsymbol{e}_{i} \otimes \boldsymbol{e}_{j} \tag{2.3.36}
\end{equation*}
$$

matrix representation of coordinates $\left[\epsilon_{i j}^{\mathrm{dev}}\right]$

$$
\left[\epsilon_{i j}^{\mathrm{dev}}\right]=\left[\begin{array}{ccc}
\frac{1}{3}\left[2 \epsilon_{11}-\epsilon_{22}-\epsilon_{33}\right] & \epsilon_{12} & \epsilon_{13} \tag{2.3.37}\\
\epsilon_{21} & \frac{1}{3}\left[2 \epsilon_{22}-\epsilon_{11}-\epsilon_{33}\right] & \epsilon_{13} \\
\epsilon_{31} & & \epsilon_{32}
\end{array} \frac{1}{3}\left[2 \epsilon_{33}-\epsilon_{11}-\epsilon_{22}\right][]\right.
$$

trace of deviatoric strains $\operatorname{tr}\left(\epsilon^{\mathrm{dev}}\right)$

$$
\begin{align*}
\operatorname{tr}\left(\epsilon^{\mathrm{dev}}\right) & =\frac{1}{3}\left[2 \epsilon_{11}-\epsilon_{22}-\epsilon_{33}\right] \\
& +\frac{1}{3}\left[2 \epsilon_{22}-\epsilon_{11}-\epsilon_{33}\right] \tag{2.3.38}\\
& +\frac{1}{3}\left[2 \epsilon_{33}-\epsilon_{11}-\epsilon_{22}\right]=0
\end{align*}
$$

- deviatoric strain tensor $\boldsymbol{\epsilon}^{\mathrm{dev}}$ is a traceless second order tensor as $\operatorname{tr}\left(\boldsymbol{\epsilon}^{\mathrm{dev}}\right)=0$
- deviatoric strain tensor $\epsilon^{\text {dev }}$ contains the shape changing, volume preserving part of the total strain tensor $\boldsymbol{\epsilon}$

Volumetric-deviatoric decomposition

- examples of purely volumetric deformation

$$
\begin{equation*}
\epsilon^{\mathrm{vol}}=\frac{1}{3}[\epsilon: I] I=\mathbb{I}^{\mathrm{vol}}: \epsilon \quad \operatorname{tr}\left(\epsilon^{\mathrm{vol}}\right)=\operatorname{tr}(\epsilon) \tag{2.3.39}
\end{equation*}
$$

expansion

$$
e>0 \text { and } \boldsymbol{\epsilon}^{\mathrm{dev}}=\mathbf{0}
$$

compression

$e<0$ and $\boldsymbol{e}^{\mathrm{dev}}=\mathbf{0}$

- examples of purely deviatoric deformation

$$
\begin{equation*}
\boldsymbol{\epsilon}^{\mathrm{dev}}=\boldsymbol{\epsilon}-\frac{1}{3}[\boldsymbol{\epsilon}: \boldsymbol{I}] \boldsymbol{I}=\mathbb{I}^{\mathrm{dev}}: \boldsymbol{\epsilon} \quad \operatorname{tr}\left(\boldsymbol{\epsilon}^{\mathrm{dev}}\right)=0 \tag{2.3.40}
\end{equation*}
$$

pure shear

$e=0$ and $\boldsymbol{\epsilon}^{\mathrm{dev}} \neq \mathbf{0}$
simple shear

$e=0$ and $\boldsymbol{\epsilon}^{\mathrm{dev}} \neq \mathbf{0}$

2.3.5 Strain vector

assume we are interested in strain on a plane characterized through its normal n, strain vector $\boldsymbol{t}_{\epsilon}$ acting on plane given through normal projection of strain tensor $\boldsymbol{\epsilon}$

$$
\begin{equation*}
t_{\epsilon}=\epsilon \cdot n \tag{2.3.41}
\end{equation*}
$$

index representation

$$
\begin{align*}
\boldsymbol{t}_{\epsilon} & =\left(\epsilon_{i j} \boldsymbol{e}_{i} \otimes \boldsymbol{e}_{j}\right) \cdot\left(n_{k} \boldsymbol{e}_{k}\right) \tag{2.3.42}\\
& =\epsilon_{i j} n_{k} \delta_{j k} \boldsymbol{e}_{i}=\epsilon_{i j} n_{j} \boldsymbol{e}_{i}=t_{\epsilon i} \boldsymbol{e}_{i}
\end{align*}
$$

representation of coordinates $\left[t_{\epsilon i}\right]$

$$
\left[\begin{array}{c}
t_{\epsilon 1} \tag{2.3.43}\\
t_{\epsilon 2} \\
t_{\epsilon 3}
\end{array}\right]=\left[\begin{array}{c}
\epsilon_{11} n_{1}+\epsilon_{12} n_{2}+\epsilon_{13} n_{3} \\
\epsilon_{21} n_{1}+\epsilon_{22} n_{2}+\epsilon_{23} n_{3} \\
\epsilon_{31} n_{1}+\epsilon_{32} n_{2}+\epsilon_{33} n_{3}
\end{array}\right]
$$

alternative interpretation: assume we are interested in strains along a particular material direction, i.e. the stretch of a fiber at $\boldsymbol{x} \in \mathcal{B}$ characterized through its normal n with $\|\boldsymbol{n}\|=1$
stretch as change of displacement vector u in the direction of n given through the Gateaux derivative §??

$$
\begin{align*}
\mathrm{D} \boldsymbol{u}(\boldsymbol{x}) \cdot \boldsymbol{n} & =\left.\frac{\mathrm{d}}{\mathrm{~d} \epsilon} \boldsymbol{u}(\boldsymbol{x}+\epsilon \boldsymbol{n})\right|_{\epsilon=0} \\
& =\left.\underbrace{\nabla \boldsymbol{u}(\boldsymbol{x}+\epsilon \boldsymbol{n})}_{\text {outer derviative }} \cdot \underbrace{\boldsymbol{n}}_{\text {inner derivative }}\right|_{\epsilon=0}=\nabla \boldsymbol{u}(\boldsymbol{x}) \cdot \boldsymbol{n} \tag{2.3.44}
\end{align*}
$$

recall that $\nabla \boldsymbol{u}=\nabla^{\text {sym }} \boldsymbol{u}+\nabla^{\text {skw }} \boldsymbol{u}=\boldsymbol{\epsilon}+\boldsymbol{\omega}$ whereby rotation $\omega=\nabla^{\text {skw }} \boldsymbol{u}$ does not induce strain, thus

$$
\begin{equation*}
\boldsymbol{t}_{\epsilon}=\nabla^{\mathrm{sym}} \boldsymbol{u} \cdot \boldsymbol{n}=\epsilon \cdot \boldsymbol{n} \tag{2.3.45}
\end{equation*}
$$

2.3.6 Normal-shear decomposition

assume we are interested in strain along a particular fiber characterized through its normal n, stretch of fiber ϵ_{n} given through normal projection of strain vector $\boldsymbol{t}_{\epsilon}$

$$
\begin{equation*}
\epsilon_{n}=t_{\epsilon} \cdot n \tag{2.3.46}
\end{equation*}
$$

alternative interpretation: stretch of a line element can be understood as the projection of change of displacement in the direction of n as $\mathrm{D} \boldsymbol{u} \cdot \boldsymbol{n}=\nabla \boldsymbol{u} \cdot \boldsymbol{n}$ onto the direction n

$$
\begin{equation*}
\epsilon_{n}=n \cdot \nabla u \cdot n=n \cdot \epsilon \cdot \boldsymbol{n}=\boldsymbol{\epsilon}:[\boldsymbol{n} \otimes n] \tag{2.3.47}
\end{equation*}
$$

normal-shear (tangential) decomposition of strain vector $\boldsymbol{t}_{\epsilon}$

$$
\begin{equation*}
\boldsymbol{t}_{\epsilon}=\boldsymbol{\epsilon}_{n}+\boldsymbol{\epsilon}_{t} \tag{2.3.48}
\end{equation*}
$$

normal strain vector - stretch of fibers in direction of n

$$
\begin{equation*}
\boldsymbol{\epsilon}_{n}=\boldsymbol{\epsilon}:[\boldsymbol{n} \otimes \boldsymbol{n}] \boldsymbol{n} \tag{2.3.49}
\end{equation*}
$$

shear (tangential) strain vector - sliding of fibers parallel to n

$$
\begin{equation*}
\boldsymbol{\epsilon}_{t}=\boldsymbol{t}_{\epsilon}-\boldsymbol{\epsilon}_{n}=\boldsymbol{\epsilon}:\left[\text { Ir }^{\mathrm{sym}} \cdot \boldsymbol{n}-\boldsymbol{n} \otimes \boldsymbol{n} \otimes \boldsymbol{n}\right] \tag{2.3.50}
\end{equation*}
$$

amount of sliding γ_{n}

$$
\begin{equation*}
\gamma_{n}=2\left\|\boldsymbol{\epsilon}_{t}\right\|=2 \sqrt{\boldsymbol{\epsilon}_{t} \cdot \boldsymbol{\epsilon}_{t}}=2 \sqrt{\boldsymbol{t}_{\epsilon} \cdot \boldsymbol{t}_{\epsilon}-\epsilon_{n}^{2}} \tag{2.3.51}
\end{equation*}
$$

in general, i.e. for an arbitrary direction n, we have normal and shear contributions to the strain vector, however, three particular directions $\left\{\boldsymbol{n}_{\epsilon i}\right\}_{i=1,2,3}$ can be identified, for which $\boldsymbol{t}_{\epsilon}=\boldsymbol{\epsilon}_{n}$ and thus $\boldsymbol{\epsilon}_{t}=\mathbf{0}$, the corresponding $\left\{\boldsymbol{n}_{\epsilon}\right\}_{i=1,2,3}$ are called principal strain directions and $\left\{\epsilon_{n i}\right\}_{i=1,2,3}=\left\{\lambda_{\epsilon i}\right\}_{i=1,2,3}$ are the principal strains or stretches

2.3.7 Principal strains - stretches

assume strain tensor ϵ to be known at $x \in \mathcal{B}$, principal strains $\left\{\lambda_{\epsilon}\right\}_{i=1,2,3}$ and principal strain directions $\left\{\boldsymbol{n}_{\epsilon}\right\}_{i=1,2,3}$ can be derived from solution of special eigenvalue problem according to §1.1.3

$$
\begin{equation*}
\boldsymbol{\epsilon} \cdot \boldsymbol{n}_{\epsilon i}=\lambda_{\epsilon i} \boldsymbol{n}_{\epsilon i} \quad\left[\boldsymbol{\epsilon}-\lambda_{\epsilon i}\right] \cdot \boldsymbol{n}_{\epsilon i}=\mathbf{0} \tag{2.3.52}
\end{equation*}
$$

solution

$$
\begin{equation*}
\operatorname{det}\left(\boldsymbol{\epsilon}-\lambda_{\epsilon} \boldsymbol{I}\right)=0 \tag{2.3.53}
\end{equation*}
$$

or in terms of roots of characteristic equation

$$
\begin{equation*}
\lambda_{\epsilon}^{3}-I_{\epsilon} \lambda_{\epsilon}^{2}+I I_{\epsilon} \lambda_{\epsilon}-I I I_{\epsilon}=0 \tag{2.3.54}
\end{equation*}
$$

roots of characteristic equations in terms of principal invariants of $\boldsymbol{\epsilon}$

$$
\begin{align*}
& I_{\epsilon}=\operatorname{tr}(\boldsymbol{\epsilon}) \\
& I I_{\epsilon}=\frac{1}{2}\left[\operatorname{tr}^{2}(\boldsymbol{\epsilon})-\operatorname{tr}\left(\epsilon^{2}\right)\right] \tag{2.3.55}\\
&=\lambda_{\epsilon 2}+\lambda_{\epsilon 3} \lambda_{\epsilon 3}+\lambda_{\epsilon 3} \lambda_{\epsilon 1}+\lambda_{\epsilon 1} \lambda_{\epsilon 2} \\
& I I I_{\epsilon}=\operatorname{det}(\boldsymbol{\epsilon})
\end{align*}=\lambda_{\epsilon 1} \lambda_{\epsilon 2} \lambda_{\epsilon 3}
$$

spectral representation of ϵ

$$
\begin{equation*}
\boldsymbol{\epsilon}=\sum_{i=1}^{3} \lambda_{\epsilon i} \boldsymbol{n}_{\epsilon i} \otimes \boldsymbol{n}_{\epsilon i} \tag{2.3.56}
\end{equation*}
$$

principal strains (stretches) $\lambda_{\epsilon i}$ are purely normal, no shear deformation (sliding) γ_{n} in principal directions, i.e. $\boldsymbol{t}_{\epsilon i}=$ $\boldsymbol{\epsilon}_{n}=\lambda_{\epsilon i} \boldsymbol{n}_{\epsilon i}$ and $\boldsymbol{\epsilon}_{t}=\mathbf{0}$ thus $\gamma_{n}=0$
due to symmetry of strains $\boldsymbol{\epsilon}=\boldsymbol{\epsilon}^{\mathrm{t}}$, strain tensor possesses three real eigenvalues $\left\{\lambda_{\epsilon}\right\}_{i=1,2,3}$, corresponding eigendirections $\left\{\boldsymbol{n}_{\epsilon i}\right\}_{i=1,2,3}$ are thus orthogonal $\boldsymbol{n}_{\epsilon i} \cdot \boldsymbol{n}_{\epsilon j}=\delta_{i j}$

2.3.8 Compatibility

until now, we have assumed the displacement field $u(x, t)$ to be given, such that the strain field $\epsilon=\nabla^{\text {sym }} \boldsymbol{u}$ could have been derived uniquely as partial derivative of \boldsymbol{u} with respect to the position x at fixed time t
assume now, that for a given strain field $\boldsymbol{\epsilon}(\boldsymbol{x}, t)$, we want to know whether these strains ϵ are compatible with a continuous single-valued displacement field u
symmetric second order incompatibility tensor

$$
\begin{equation*}
\eta=\operatorname{crl}(\operatorname{crl}(\boldsymbol{\epsilon})) \tag{2.3.57}
\end{equation*}
$$

index representation of incompatibility tensor

$$
\begin{equation*}
\boldsymbol{\eta}=\eta_{i j} \boldsymbol{e}_{i} \otimes \boldsymbol{e}_{j}=\stackrel{3}{e}_{i k m} \boldsymbol{\epsilon}_{k n, m l} \stackrel{3}{e_{j l n}} \boldsymbol{e}_{i} \otimes \boldsymbol{e}_{j}=\mathbf{0} \tag{2.3.58}
\end{equation*}
$$

coordinate representation of compatibility condition

$$
\begin{equation*}
\epsilon_{k l, m n}+\epsilon_{m n, k l}-\epsilon_{m l, k n}-\epsilon_{k n, m l}=0 \tag{2.3.59}
\end{equation*}
$$

valid $\forall k, l, m, n$, thus 81 equations which are partly redundant, six independent conditions

St. Venant compatibility conditions

$$
\begin{array}{ll}
\eta_{11}=\epsilon_{22,33}+\epsilon_{33,22}-2 \epsilon_{23,32} & =0 \\
\eta_{22}=\epsilon_{33,11}+\epsilon_{11,33}-2 \epsilon_{31,13} & =0 \\
\eta_{33}=\epsilon_{11,22}+\epsilon_{22,11}-2 \epsilon_{12,21} & =0 \tag{2.3.60}\\
\eta_{12}=\epsilon_{13,32}+\epsilon_{23,31}-\epsilon_{33,12}-\epsilon_{12,33}= & 0 \\
\eta_{23}=\epsilon_{21,13}+\epsilon_{31,12}-\epsilon_{11,23}-\epsilon_{23,11}=0 \\
\eta_{31}=\epsilon_{32,21}+\epsilon_{12,23}-\epsilon_{22,31}-\epsilon_{31,22}=0
\end{array}
$$

incompatible displacement field, e.g. in dislocation theory

2.3.9 Special case of plane strain

dimensional reduction in case of plane strain with vanishing strains $\epsilon_{13}=\epsilon_{23}=\epsilon_{31}=\epsilon_{32}=\epsilon_{33}=0$ in out of plane direction, e.g. in geomechanics

$$
\begin{equation*}
\boldsymbol{\epsilon}=\epsilon_{i j} \boldsymbol{e}_{i} \otimes \boldsymbol{e}_{j} \tag{2.3.61}
\end{equation*}
$$

matrix representation of coordinates $\left[\epsilon_{i j}\right]$

$$
\left[\epsilon_{i j}\right]=\left[\begin{array}{lll}
\epsilon_{11} & \epsilon_{12} & 0 \tag{2.3.62}\\
\epsilon_{21} & \epsilon_{22} & 0 \\
0 & 0 & 0
\end{array}\right]
$$

2.3.10 Voigt representation of strain

three dimensional second order strain tensor $\boldsymbol{\epsilon}$

$$
\begin{equation*}
\boldsymbol{\epsilon}=\epsilon_{i j} \boldsymbol{e}_{i} \otimes \boldsymbol{e}_{j} \tag{2.3.63}
\end{equation*}
$$

matrix representation of coordinates $\left[\epsilon_{i j}\right]$

$$
\left[\epsilon_{i j}\right]=\left[\begin{array}{lll}
\epsilon_{11} & \epsilon_{12} & \epsilon_{13} \tag{2.3.64}\\
\epsilon_{21} & \epsilon_{22} & \epsilon_{23} \\
\epsilon_{31} & \epsilon_{23} & \epsilon_{33}
\end{array}\right]
$$

due to symmetry $\left[\epsilon_{i j}\right]=\left[\epsilon_{j i}\right]$ and thus $\epsilon_{12}=\epsilon_{21}, \epsilon_{23}=\epsilon_{32}$, $\epsilon_{31}=\epsilon_{13}$, strain tensor ϵ contains only six independent components $\epsilon_{11}, \epsilon_{22}, \epsilon_{33}, \epsilon_{12}, \epsilon_{23}, \epsilon_{31}$, it proves convenient to represent second order tensor ϵ through a vector $\underline{\epsilon}$

$$
\begin{equation*}
\underline{\epsilon}=\left[\epsilon_{11}, \epsilon_{22}, \epsilon_{33}, 2 \epsilon_{12}, 2 \epsilon_{23}, 2 \epsilon_{31}\right]^{\mathrm{t}} \tag{2.3.65}
\end{equation*}
$$

vector representation $\underline{\epsilon}$ of strain ϵ in case of plane strain

$$
\begin{equation*}
\underline{\epsilon}=\left[\epsilon_{11}, \epsilon_{22}, 2 \epsilon_{12}\right]^{\mathrm{t}} \tag{2.3.66}
\end{equation*}
$$

