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1 Tensor calculus

1.2 Tensor analysis

1.2.1 Derivatives

consider smooth, differentiable scalar field & with

e scalar argument @ R —-R, o) =ua
e vectorial argument @ : R — R, @(x)=u

e tensorial argument ®: R*XR°—R; O (X)=«

Frechet derivative

e scalar Do (x) = ad;(x) = 0,P (x)
e vectorial D@ (x) = 8<I;xx) = 0,P (x) (1.2.1)
e tensorial D& (X) = 8<I;§(X) =dx P (X)

Gateaux derivative

Gateaux derivative as particular Frechet derivative with re-
spect to directions u, u and U

escalar D@ (x) u iCli(x—keu) leco Yu €R

de
e vectorial D® (x) - u :%QD (x+€u) |e=o YueR?
e tensorial DCD(X):U:%QD(X—{— eU)|c=o VUE RP® R
(1.2.2)

in what follows in particular vectorial arguments, e.g., point
position x or displacement u
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1 Tensor calculus

the Gateaux derivative is a simple mechanism to determine
derivatives with respect to vectors or tensor, by rewriting
them as derivatives with respect to a scalar €

example: derivatives of invariants

use the Gateaux derivative

op(A) . d
s DA = (A +ebA) |

to determine the derivatives of the three invariants I4, 114,
I114 of the second order tensor A with respect to A itself!

DP(A) : AA =

in words: the Gateaux derivative D of a scalar field @ (in
this case the invariant I, I14, I114) along a given direction
U (in this case AA) is the derivative of the field @ at position
X (in this case A) "perturbed” by the direction eU (in this
case € AA) with respect to € evaluated ate = 0

setting € = 0 filters out the linear terms, i.e., all higher order
terms are set to zero, the Gateaux derivative is therefore also
referred to as linearization, it corresponds to the first term of
a Taylor series
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1 Tensor calculus

derivative of firstinvariant [, =tr(A) =A:1

DIs(A) : AA=$ tr(A + eAA) |
= 4 [A+eAA]: Iy
= AA:Il.o=1:AA
dI4(A
DIs(4) = 244) _

remark: [, is linear in A, its Gateaux derivative is constant,
there are no terms in € once we take the derivative d/de

derivative of second invariant Iy = [[A: I]*+ A : A]

DII4(A) : AA= $ 1t (A+ eAA) — Lr(A + eAA)?|—g
= d1[[a+enra]: I
—  2[A+€eAA]: [A'+ eAAY|emo
= [A+eAA]:I]AA:T
—  FAA:A'— 1A :AA'—eAA: AAY
=  [tr(A)I—AY:AA
DII4(A) = 8”5‘—151‘” — tr(A) I — A

here, we have used the following identity
tr(A*) = (A-A):I=A: A

remark: 1,4 is quadratic in A, its Gateaux derivative is lin-
ear, once we took the derivative d /de, the higher order term
in € is filtered out by setting € = 0
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1 Tensor calculus

derivative of third invariant ~ [1I4 = det(A)

DIIIA(A) : AA= S det(A + eAA)|—g
- % det(A-[I+ A~ eAA])|eo
(A) -det(cA1- AA +I)|c—o
= & det(4)  [(eAp-1am +1)

(eAp-1.pa2 +1) (€A 1843 +1)] [e=0
=det(A) - [Ag-1.411 + Aa-1042 T Au-1.423]
=det(A) -tr(A71-AA)
—det(A) - A™t: AA

)

AIII4(A)

- 0A
here, we have used the following expression for the deter-

minant of (eA~! - AA) expressed through the characteristic
polynom for the eigenvalue A = —1

DIII4(A) = — det(A)- A

det(eA - AA—AI) = (€A1 4 — N
(€Aq-1.0a0 = A)(€Ap-1.003 — A)
reformulation with the help of index notation
tr(A1-AA) = (A1-AA): 1T
— (Al.;lei R e;) - (AAner D ep) : (Fmnem  ey)
— (Ai;lAAﬂei R ep) : (Omnem  ey)
= A AAjSinbindmn = A~ AA

remark: 114 is cubic in A
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1 Tensor calculus

derivative of function with tensorial argument show that
the derivative of the function ®(A) with respect to its ten-
sorial arguement A is given through the component-wise
derivative with respect to the individual tensorial entries A;;

index representation of second order tensor A
A = Ai]' e X ej

A = Anei®@e + Aper Q@er + Aze1 Q@ e3
+ Aypery®e+ Aper @ er + Axer ® es
+ Aziez@e; + Axnes @ ey + Aszes X e3

extraction of individual components A;; through "projec-
tion” onto the base vectors e; and e;

Aij=¢ei-A-ej=¢e;- (Auer@e) - ej = oy A 0ij = Ajj

and thus
8<I>(A) _ aCI) BAZ-]- _ aq) aei <A - e]' _ aq) 2 6 &
0A 0A; 0A  0A; 0A 0A;
aq)(A) = L e1Xe+ 0P e1X e+ 0P e1 ®es
0A 8A11 8A12 8A13
0P od 0P
4 8A21ez ® e1 + aAzzez X ep + aA23€2 X e3
od od 0P
+ aA3183®€1+aA3283®82—|—aA33€3®€3

remark: derivatives of functions with respect to tensors can
be derived individually for each component
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1 Tensor calculus

derivative of first invariant I, wrt A use the component-
wise derivation to determine the derivative of the first in-
variant I with respect to its tensor and validate the result
derived previously

[ =trA = A;1 + Ap + Ass

AA(A)  [dly
oA [aAU €]
[ o1, 9l, 9l | |
Ay 9Ay; Ay 100
dlx _ | 9y 9Ly 9ly — 1010
dA;j 0Ay1 0dAp dAp;
A, Ay Al
| 94y 9Ay A% 001
dl4(A) _
0A

remark: derivatives of functions with respect to tensors can
be derived individually for each component

derivative of A wrt itself

A:Ai]'ei@ej

9A  [0A; DA;

il Z — 6ud;
9A [aAkl] e; ®e]®ek®el [aAkl] kOl
J0A _

— = IRKI =1

oA °

remark: always keep in mind that the derivative of A with
respect to itself is not(!) 1 but the fourth order unity tensor I
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1 Tensor calculus

derivative of inverse A~!'wrt A determine the derivative
of the inverse of A wrt A by using the definition of the in-

verse A1- A =1

0A~! 8A
aA - aAkl el®e]®ek®el
derivative of identity with respect to A
~14. 1
a(Sim _ aAij A] aAz] A]m‘l—A aA]m —0
and thus
dA;" IA;
i 1 jm 1 _ —15. —t _  A—1 pA—t
AL | =~y aAsz = —Aj; Opom A, = —Ay A
aA_l _ —A_1®A_t
0A

remark: the derivative of the inverse of a tensor wrt the ten-
sor itself is negative. it can be determined with a trick by
using the definition of the inverse.
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1 Tensor calculus

1.2.2 Gradient

consider vector valued scalar and vector field f (x) and f(x)
on domain B € R?

f:B—-R f:x—f (x)
f:B—-TR f:x—f(x)

Gradient of a scalar field
gradient V f (x) of vector valued scalar field f (x)

Vi =L = fi e (123)
and thus -
fa
Vix)=| f2 (1.2.4)
fa

gradient of scalar field renders a vector field
Gradient of a vector field
gradient V f (x) of vector valued vector field f (x)

Vf (x) = a’géx) = fi,j(x) e X e]- (1.2.5)
J
and thus ] )
fi1 fiz fi3
Vf(x)= fo1 fa2 fo23 (1.2.6)
_f3,1 f32 f3,3_

gradient of vector field renders a (second order) tensor field
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1 Tensor calculus

1.2.3 Divergence

consider vector valued vector and tensor field f(x) and F(x)
on domain B € R?

f:B—TR3 fix—f (x)
F:B—-R°®R> F:x— F (x)

Divergence of a vector field

divergence V f (x) of vector valued vector field f (x)

div(f(x)) =tr(Vf(x)) =Vf(x): I (1.2.7)
with Vf (x) = fi,]'(x) e X €;
div(f (x)) = fii(x) = fi1 + fa2 + f33 (1.2.8)

divergence of a vector field renders a scalar field

Divergence of a tensor field

divergence VF (x) of vector valued tensor field F (x)
div(F (x)) =tr(VF(x)) =VF(x):1 (1.2.9)
with VF (x) = Fijx(x) e; ® e; @ ek

Fi11+ Fi2o + Fi33
div(F (x)) = F;;(x) = | Fo11+ Fapp + F33 (1.2.10)
F311 + Fz20 + F33

divergence of a second order tensor field renders a vector field
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1 Tensor calculus

1.2.4 Laplace operator

consider vector valued scalar and vector field f (x) and f(x)
on domain B € R?

f:B—=R f:x—f (x)
f:B—R> f:x—f(x)
Laplace operator acting on scalar field

Laplace operator Af (x) acting on vector valued scalar field f(x)

Af (x) =div(V(f (x))) (1.2.11)
and thus
Af(x)=fi=fu+fo+fn (1.2.12)

Laplace operator acting on scalar field renders a scalar field

Laplace operator acting on vector field

Laplace operator A f (x) acting on vector valued vector field

f(x)

Af (x) =div(V(f(x))) (1.2.13)
and thus
fi11+ fio + fi33
Af(x)=fijij= | o+ fa+ fo33 (1.2.14)
] fai1 + f320 + f333 |

Laplace operator acting on vector field renders a vector field
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1 Tensor calculus

Useful transformations

consider scalar, vector and second order tensor field a(x),
u(x),v(x) and A(x) on domain B € R?

n: B—TR w: x—a (x)
u: B—R? u: x —u (x)
v: B—>TR? v:x—v (x)
A:B—-R®R> A:x— A (x)

important transformations

V (eu) = u®Va + aVu
Vu-v) = u-Vo + v-Vu
div (e« u) = adiv(u) + u-Va
div (« A) = adiv(A) + A -Va
div (u-A) =u-div(A) + A: Vu
div(u®v) = udiv(v) + v-Vu'

(1.2.15)

index notation write eqns (1.2.15) in index notation!
( X U; ),]' = Uix;+ &Uj;
(uivi)j= uivij+ i
dup )i = Ui+ U
( (1.2.16)
(wAyj)j= wdyj + Aja,
(wi Aij)j = ui Ayjj + Aij ui
(uivj);= wivjj+ vju
remark: sometimes index notation can be more illustrative!
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1 Tensor calculus

1.2.5 Integral transformations

integral theorems define relations n

between surface integral / ..dA B oB
B

9
and volume integral / ..dV eXeh
B

consider scalar, vector and second order tensor field a(x),
u(x) and A(x) on domain B € R?
n: B—TR a: x—a (x)
u: B—R? u: x —>u (x)
A:B—-R’®R> A:x— A (x)

Integral theorem for scalar fields (Green theorem)

/ an dA = Va dV
9B (1.2.17)
an; dA = a; dV
B B
Integral theorem for vector fields (Gauss theorem)
/ w-ndA = | div() dV
9B (1.2.18)

/ u; n; dA = f Uji dV
oB B

Integral theorem for tensor fields (Gauss theorem)

/ A-n dA = / div(A) dV

GlE (1.2.19)
/ Ai]' n]' dA = Ai]',]' dV

oB B
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