ME338A
 CONTINUUM MECHANICS

lecture notes 03

tuesday, january 12th, 2010

Invariants of second order tensors

the following property of the scalar triple product

$$
\begin{equation*}
[u, v, w]=u \cdot(v \times w) \tag{1.1.67}
\end{equation*}
$$

introduces three scalar-valued quantities $I_{A}, I I_{A}, I I I_{A}$ associated with the second order tensor A

$$
\begin{align*}
{[A \cdot u, v, w]+[u, A \cdot v, w]+[u, v, A \cdot w] } & =I_{A}[u, v, w] \\
{[u, A \cdot v, A \cdot w]+[A \cdot u, v, A \cdot w]+[A \cdot u, A \cdot v, w] } & =I I_{A}[u, v, w] \\
{[A \cdot u, A \cdot v, A \cdot w] } & =I I I_{A}[u, v, w] \tag{1.1.68}
\end{align*}
$$

the proof of $I I_{A}, I I I_{A}$ being invariant for different base systems $\{u, v, w\}$ is similar to the one for I_{A}
$I_{A}, I I_{A}, I I I_{A}$ are called the three principal invariants of A which can be expressed as

$$
\begin{align*}
I_{A} & =\operatorname{tr}(\boldsymbol{A}) & & \partial_{A} I_{A}=\boldsymbol{I} \\
I I_{A} & =\frac{1}{2}\left[\operatorname{tr}^{2}(\boldsymbol{A})-\operatorname{tr}\left(\boldsymbol{A}^{2}\right)\right] & & \partial_{A} I I_{A}=I_{A} \boldsymbol{I}-\boldsymbol{A} \\
I I I_{A} & =\operatorname{det}(\boldsymbol{A}) & & \partial_{A} I I I_{A}=I I I_{A} A^{-\mathrm{t}} \tag{1.1.69}
\end{align*}
$$

alternatively, we could work with the three basic invariants $\bar{I}_{A}, \bar{I} I_{A}, I \bar{I} I_{A}$ of A which are more common in the context of anisotropy

$$
\begin{align*}
\bar{I}_{A} & =A^{1}: I \\
\bar{I} I_{A} & =A^{2}: I \tag{1.1.70}\\
I \bar{I} I_{A} & =A^{3}: I
\end{align*}
$$

Trace of second order tensors

trace $\operatorname{tr}(A)$ of a second order tensor $A=\boldsymbol{u} \otimes \boldsymbol{v}$ introduces a scalar $\operatorname{tr}(A) \in \mathcal{R}$

$$
\begin{equation*}
\operatorname{tr}(\boldsymbol{u} \otimes \boldsymbol{v})=\boldsymbol{u} \cdot \boldsymbol{v} \tag{1.1.71}
\end{equation*}
$$

such that $\operatorname{tr}(\boldsymbol{A})$ is the sum of the diagonal entries $A_{i i}$ of A

$$
\begin{align*}
\operatorname{tr}(A) & =\operatorname{tr}\left(A_{i j} \boldsymbol{e}_{i} \otimes \boldsymbol{e}_{j}\right) \\
& =A_{i j} \operatorname{tr}\left(\boldsymbol{e}_{i} \otimes \boldsymbol{e}_{j}\right)=A_{i j} \boldsymbol{e}_{i} \cdot \boldsymbol{e}_{j} \tag{1.1.72}\\
& =A_{i j} \delta_{i j}=A_{i i}=A_{11}+A_{22}+A_{33}
\end{align*}
$$

with

$$
\begin{equation*}
I_{A}=\bar{I}_{A}=\operatorname{tr}(A) \tag{1.1.73}
\end{equation*}
$$

properties of the trace of second order tensors

$$
\begin{align*}
& \operatorname{tr}(\boldsymbol{I})=3 \\
& \operatorname{tr}\left(\boldsymbol{A}^{\mathrm{t}}\right)=\operatorname{tr}(\boldsymbol{A}) \\
& \operatorname{tr}(\boldsymbol{A} \cdot \boldsymbol{B})=\operatorname{tr}(\boldsymbol{B} \cdot \boldsymbol{A}) \tag{1.1.74}\\
& \operatorname{tr}(\alpha \boldsymbol{A}+\beta \boldsymbol{B})=\alpha \operatorname{tr}(\boldsymbol{A})+\beta \operatorname{tr}(\boldsymbol{B}) \\
& \operatorname{tr}\left(\boldsymbol{A} \cdot \boldsymbol{B}^{\mathrm{t}}\right)=\boldsymbol{A}: \boldsymbol{B} \\
& \operatorname{tr}(\boldsymbol{A})=\operatorname{tr}(\boldsymbol{A} \cdot \boldsymbol{I})=\boldsymbol{A}: \boldsymbol{I}
\end{align*}
$$

Determinant of second order tensors

determinant $\operatorname{det}(\boldsymbol{A})$ of second order tensor \boldsymbol{A} introduces a scalar $\operatorname{det}(A) \in \mathcal{R}$

$$
\begin{align*}
\operatorname{det}(\boldsymbol{A}) & =\operatorname{det}\left(A_{i j}\right)=\frac{1}{6} e_{i j k} e_{a b c} A_{i a} A_{j b} A_{k c} \\
& =A_{11} A_{22} A_{33}+A_{21} A_{32} A_{13}+A_{31} A_{12} A_{23} \tag{1.1.75}\\
& -A_{11} A_{23} A_{32}-A_{22} A_{31} A_{13}-A_{33} A_{12} A_{21}
\end{align*}
$$

with

$$
\begin{equation*}
I I I_{A}=\operatorname{det}(A) \tag{1.1.76}
\end{equation*}
$$

determinant defining vector product $u \times v$

$$
u \times v=\operatorname{det}\left[\begin{array}{lll}
u_{1} & v_{1} & e_{1} \tag{1.1.77}\\
u_{2} & v_{2} & e_{2} \\
u_{3} & v_{3} & e_{3}
\end{array}\right]=\left[\begin{array}{l}
u_{2} v_{3}-u_{3} v_{2} \\
u_{3} v_{1}-u_{1} v_{3} \\
u_{1} v_{2}-u_{2} v_{1}
\end{array}\right]
$$

determinant defining scalar triple vector product $[\boldsymbol{u}, \boldsymbol{v}, \boldsymbol{w}]$

$$
[\boldsymbol{u}, \boldsymbol{v}, \boldsymbol{w}]=(\boldsymbol{u} \times \boldsymbol{v}) \cdot \boldsymbol{w}=\operatorname{det}\left[\begin{array}{lll}
u_{1} & v_{1} & w_{1} \tag{1.1.78}\\
u_{2} & v_{2} & w_{2} \\
u_{3} & v_{3} & w_{3}
\end{array}\right]
$$

properties of determinant of a second order tensors

$$
\begin{align*}
& \operatorname{det}(\boldsymbol{I})=1 \\
& \operatorname{det}\left(\boldsymbol{A}^{\mathrm{t}}\right)=\operatorname{det}(\boldsymbol{A}) \\
& \operatorname{det}(\alpha \boldsymbol{A})=\alpha^{3} \operatorname{det}(\boldsymbol{A}) \tag{1.1.79}\\
& \operatorname{det}(\boldsymbol{A} \cdot \boldsymbol{B})=\operatorname{det}(\boldsymbol{A}) \operatorname{det}(\boldsymbol{B}) \\
& \operatorname{det}(\boldsymbol{u} \otimes \boldsymbol{v})=0
\end{align*}
$$

Inverse of second order tensors

if $\operatorname{det}(A) \neq 0$
existence of inverse A^{-1} of second order tensor A

$$
\begin{equation*}
A \cdot A^{-1}=A^{-1} \cdot A=I \tag{1.1.80}
\end{equation*}
$$

in particular

$$
\begin{equation*}
v=A \cdot u \quad A^{-1} \cdot v=u \tag{1.1.81}
\end{equation*}
$$

properties of inverse of two second order tensors

$$
\begin{align*}
\left(\boldsymbol{A}^{-1}\right)^{-1} & =\boldsymbol{A} \\
\left(\alpha A^{-1}\right)^{-1} & =\alpha^{-1} A \tag{1.1.82}\\
(\boldsymbol{A} \cdot \boldsymbol{B})^{-1} & =\boldsymbol{B}^{-1} \cdot \boldsymbol{A}^{-1}
\end{align*}
$$

determinant $\operatorname{det}\left(A^{-1}\right)$ of inverse of A

$$
\begin{equation*}
\operatorname{det}\left(\boldsymbol{A}^{-1}\right)=1 / \operatorname{det}(\boldsymbol{A}) \tag{1.1.83}
\end{equation*}
$$

adjoint $A^{\text {adj }}$ of a second order tensor A

$$
\begin{equation*}
A^{\mathrm{adj}}=\operatorname{det}(A) A^{-1} \tag{1.1.84}
\end{equation*}
$$

cofactor $A^{\text {cof }}$ of a second order tensor A

$$
\begin{equation*}
A^{\mathrm{cof}}=\operatorname{det}(A) A^{-\mathrm{t}}=\left(A^{\mathrm{adj}}\right)^{\mathrm{t}} \tag{1.1.85}
\end{equation*}
$$

with

$$
\begin{equation*}
\partial_{A} \operatorname{det}(\boldsymbol{A})=\operatorname{det}(\boldsymbol{A}) A^{-\mathrm{t}}=I I I_{A} A^{-\mathrm{t}}=A^{\mathrm{cof}} \tag{1.1.86}
\end{equation*}
$$

1.1.3 Spectral decomposition

eigenvalue problem of arbitrary second order tensor A

$$
\begin{equation*}
\boldsymbol{A} \cdot \boldsymbol{n}_{A}=\lambda_{A} \boldsymbol{n}_{A} \quad\left[A-\lambda_{A} \boldsymbol{I}\right] \cdot \boldsymbol{n}_{A}=\mathbf{0} \tag{1.1.87}
\end{equation*}
$$

solution introduces eigenvector(s) $n_{A i}$ and eigenvalue(s) $\lambda_{A i}$

$$
\begin{equation*}
\operatorname{det}\left(A-\lambda_{A} I\right)=0 \tag{1.1.88}
\end{equation*}
$$

alternative representation in terms of scalar triple product

$$
\begin{equation*}
\left[A \cdot \boldsymbol{u}-\lambda_{A} \boldsymbol{u}, A \cdot v-\lambda_{A} v, A \cdot w-\lambda_{A} w\right]=0 \tag{1.1.89}
\end{equation*}
$$

removal of arbitrary factor $[u, v, w]$ yields characteristic equation

$$
\begin{equation*}
\lambda_{A}^{3}-I_{A} \lambda_{A}^{2}+I I_{A} \lambda_{A}-I I I_{A}=0 \tag{1.1.90}
\end{equation*}
$$

roots of characteristic equations are principal invariants of A

$$
\begin{aligned}
I_{A} & =\operatorname{tr}(A) \\
I I_{A} & =\frac{1}{2}\left[\operatorname{tr}^{2}(\boldsymbol{A})-\operatorname{tr}\left(A^{2}\right)\right] \\
I I I_{A} & =\operatorname{det}(\boldsymbol{A})
\end{aligned}
$$

spectral decomposition of A

$$
\begin{equation*}
\boldsymbol{A}=\sum_{i=1}^{3} \lambda_{A i} \boldsymbol{n}_{A i} \otimes \boldsymbol{n}_{A i} \tag{1.1.92}
\end{equation*}
$$

Cayleigh-Hamilton theorem:
a tensor \boldsymbol{A} satisfies its own characteristic equation

$$
\begin{equation*}
A^{3}-I_{A} A^{2}+I I_{A} \boldsymbol{A}-I I I_{A} \boldsymbol{I}=\mathbf{0} \tag{1.1.93}
\end{equation*}
$$

1.1.4 Symmetric - skew-symmetric decomposition

symmetric - skew-symmetric decomposition of second order tensor A

$$
\begin{equation*}
A=\frac{1}{2}\left[A+A^{\mathrm{t}}\right]+\frac{1}{2}\left[A-A^{\mathrm{t}}\right]=A^{\mathrm{sym}}+A^{\text {skw }} \tag{1.1.94}
\end{equation*}
$$

with symmetric and skew-symmetric second order tensor $A^{\text {sym }}$ and $A^{\text {skw }}$

$$
\begin{equation*}
A^{\text {sym }}=\left(A^{\text {sym }}\right)^{\mathrm{t}} \quad A^{\text {skw }}=-\left(A^{\text {skw }}\right)^{\mathrm{t}} \tag{1.1.95}
\end{equation*}
$$

- symmetric second order tensor $A^{\text {sym }}$

$$
\begin{equation*}
A^{\text {sym }}=\frac{1}{2}\left[A+A^{\mathrm{t}}\right]=\mathbb{I}^{\text {sym }}: A \tag{1.1.96}
\end{equation*}
$$

upon double contraction symmetric fourth order unit tensor $\mathbb{I}^{\text {sym }}$ extracts symmetric part of second order tensor

$$
\begin{align*}
& \mathbb{I}^{\text {sym }}=\frac{1}{2}\left[\mathbb{I}+\mathbb{I}^{\mathrm{t}}\right] \tag{1.1.97}\\
& \mathbb{I}^{\text {sym }}=\frac{1}{2}\left[\delta_{i k} \delta_{j l}+\delta_{i l} \delta_{j k}\right] \boldsymbol{e}_{i} \otimes \boldsymbol{e}_{j} \otimes \boldsymbol{e}_{k} \otimes \boldsymbol{e}_{l}
\end{align*}
$$

- skew-symmetric second order tensor $A^{\text {skw }}$

$$
\begin{equation*}
A^{\mathrm{skw}}=\frac{1}{2}\left[A-A^{\mathrm{t}}\right]=\mathbb{I}^{\mathrm{skw}}: A \tag{1.1.98}
\end{equation*}
$$

upon double contraction skew-symmetric fourth order unit tensor $\mathbb{I}^{\text {skw }}$ extracts skew-symmetric part of second order tensor

$$
\begin{align*}
& \mathbb{I}^{\mathrm{skw}}=\frac{1}{2}\left[\mathbb{I}-\mathbb{I}^{\mathrm{t}}\right] \tag{1.1.99}\\
& \mathbb{I}^{\mathrm{skw}}=\frac{1}{2}\left[\delta_{i k} \delta_{j l}-\delta_{i l} \delta_{j k}\right] \boldsymbol{e}_{i} \otimes \boldsymbol{e}_{j} \otimes \boldsymbol{e}_{k} \otimes \boldsymbol{e}_{l}
\end{align*}
$$

Symmetric tensors

symmetric part $\boldsymbol{A}^{\text {sym }}$ of a second order tensor \boldsymbol{A}

$$
\begin{equation*}
A^{\text {sym }}=\frac{1}{2}\left[A+A^{t}\right] \quad A^{\text {sym }}=\left(A^{\text {sym }}\right)^{t} \tag{1.1.100}
\end{equation*}
$$

alternative representation

$$
\begin{equation*}
A^{\text {sym }}=\mathbb{I}^{\text {sym }}: A \tag{1.1.101}
\end{equation*}
$$

whereby symmetric fourth order tensor $\mathbb{I}^{\text {sym }}$ extracts symmetric part $A^{\text {sym }}$ of second order tensor A
a symmetric second order tensor $S=A^{\text {sym }}$ processes three real eigenvalues $\left\{\lambda_{S i}\right\}_{i=1,2,3}$ and three corresponding orthogonal eigenvectors $\left\{\boldsymbol{n}_{S i}\right\}_{i=1,2,3}$, such that the spectral representation of S takes the following form

$$
\begin{equation*}
\boldsymbol{S}=\sum_{i=1}^{3} \lambda_{S i}\left(\boldsymbol{n}_{S i} \otimes \boldsymbol{n}_{S i}\right) \tag{1.1.102}
\end{equation*}
$$

three invariants $I_{S}, I I_{S}, I I I_{S}$ of symmetric tensor $S=A^{\text {sym }}$

$$
\begin{align*}
I_{S} & =\lambda_{S 1}+\lambda_{S 2}+\lambda_{S 3} \\
I I_{S} & =\lambda_{S 2} \lambda_{S 3}+\lambda_{S 3} \lambda_{S 1}+\lambda_{S 1} \lambda_{S 2} \tag{1.1.103}\\
I I I_{S} & =\lambda_{S 1} \lambda_{S 2} \lambda_{S 3}
\end{align*}
$$

square root \sqrt{S}, inverse S^{-1}, exponent $\exp (S)$ and logarithm $\ln (S)$, of positive semi-definite symmetric tensor S for which $\lambda_{S i} \geq 0$
$\sqrt{S} \quad=\sum_{i=1}^{3} \quad \sqrt{\lambda_{S i}}\left(\boldsymbol{n}_{S i} \otimes \boldsymbol{n}_{S i}\right)$
$\boldsymbol{S}^{-1}=\sum_{i=1}^{3} \quad \lambda_{S i}^{-1} \quad\left(\boldsymbol{n}_{S i} \otimes \boldsymbol{n}_{S i}\right)$
$\exp (\boldsymbol{S})=\sum_{i=1}^{3} \exp \left(\lambda_{S i}\right)\left(\boldsymbol{n}_{S i} \otimes \boldsymbol{n}_{S i}\right)$
$\ln (S)=\sum_{i=1}^{3} \quad \ln \left(\lambda_{S i}\right) \quad\left(\boldsymbol{n}_{S i} \otimes \boldsymbol{n}_{S i}\right)$

Skew-symmetric tensors

skew-symmetric part $A^{\text {skw }}$ of a second order tensor A

$$
\begin{equation*}
A^{\mathrm{skw}}=\frac{1}{2}\left[A-A^{\mathrm{t}}\right] \quad A^{\mathrm{skw}}=-\left(A^{\mathrm{skw}}\right)^{\mathrm{t}} \tag{1.1.105}
\end{equation*}
$$

alternative representation

$$
\begin{equation*}
A^{\mathrm{skw}}=\mathbb{I}^{\mathrm{skw}}: A \tag{1.1.106}
\end{equation*}
$$

whereby skew-symmetric fourth order tensor $\mathbb{I}^{\text {skw }}$ extracts skew-symmetric part $A^{\text {skw }}$ of second order tensor A
a skew-symmetric second order tensor $W=A^{\text {skw }}$ posses three independent entries, three entries vanish identically, three are equal to the negative of the independent entries, these define the axial vector \boldsymbol{w}

$$
\begin{equation*}
w=-\frac{1}{2} \stackrel{3}{e}: W \quad w=-\stackrel{3}{e} \cdot w \tag{1.1.107}
\end{equation*}
$$

associated with each skew-symmetric tensor $W=A^{\text {skw }}$

$$
\begin{equation*}
W \cdot p=w \times p \tag{1.1.108}
\end{equation*}
$$

three invariants $I_{W}, I I_{W}, I I I_{W}$ of skew-symmetric tensor W

$$
\begin{align*}
I_{W} & =\operatorname{tr}(W)=0 \\
I I_{W} & =w \cdot w \tag{1.1.109}\\
I I_{W} & =\operatorname{det}(W)=0
\end{align*}
$$

1.1.5 Volumetric - deviatoric decomposition

volumetric - deviatoric decomposition of second order tensor A

$$
\begin{equation*}
A=A^{\mathrm{vol}}+A^{\mathrm{dev}} \tag{1.1.110}
\end{equation*}
$$

with volumetric and deviatoric second order tensor A^{vol} and $A^{\text {dev }}$

$$
\begin{equation*}
\operatorname{tr}\left(A^{\mathrm{vol}}\right)=\operatorname{tr}(A) \quad \operatorname{tr}\left(A^{\mathrm{dev}}\right)=0 \tag{1.1.111}
\end{equation*}
$$

- volumetric second order tensor $A^{\text {vol }}$

$$
\begin{equation*}
A^{\mathrm{vol}}=\frac{1}{3}[A: I] I=\mathbb{I}^{\mathrm{vol}}: A \tag{1.1.112}
\end{equation*}
$$

upon double contraction volumetric fourth order unit tensor $\mathbb{I}^{\mathrm{vol}}$ extracts volumetric part of second order tensor

$$
\begin{align*}
& \mathbb{I}^{\mathrm{vol}}=\frac{1}{3} \boldsymbol{I} \otimes \boldsymbol{I} \tag{1.1.113}\\
& \mathbb{I}^{\mathrm{vol}}=\frac{1}{3} \delta_{i j} \delta_{k l} \boldsymbol{e}_{i} \otimes \boldsymbol{e}_{j} \otimes \boldsymbol{e}_{k} \otimes \boldsymbol{e}_{l}
\end{align*}
$$

- deviatoric second order tensor $A^{\text {dev }}$

$$
\begin{equation*}
A^{\mathrm{dev}}=A-\frac{1}{3}[A: I] I=\mathbb{I}^{\mathrm{dev}}: A=0 \tag{1.1.114}
\end{equation*}
$$

upon double contraction deviatoric fourth order unit tensor $I^{\text {dev }}$ extracts deviatoric part of second order tensor

$$
\begin{align*}
\mathbb{I}^{\mathrm{dev}} & =\mathbb{I}^{\mathrm{sym}}-\mathbb{I}^{\mathrm{vol}}=\mathbb{I}^{\mathrm{sym}}-\frac{1}{3} \boldsymbol{I} \otimes \boldsymbol{I} \tag{1.1.115}\\
\mathbb{I}^{\mathrm{dev}} & =\left[\frac{1}{2} \delta_{i k} \delta_{j l}+\frac{1}{2} \delta_{i l} \delta_{j k}-\frac{1}{3} \delta_{i j} \delta_{k l}\right] \boldsymbol{e}_{i} \otimes \boldsymbol{e}_{j} \otimes \boldsymbol{e}_{k} \otimes \boldsymbol{e}_{l}
\end{align*}
$$

1.1.6 Orthogonal tensors

a second order tensor Q is called orthogonal if its inverse Q^{-1} is identical to its transpose Q^{t}

$$
\begin{equation*}
Q^{-1}=Q^{\mathrm{t}} \quad \Leftrightarrow \quad Q^{\mathrm{t}} \cdot Q=Q \cdot Q^{\mathrm{t}}=I \tag{1.1.116}
\end{equation*}
$$

a second order tensor A can be decomposed multiplicatively into a positive definite symmetric tensor $\boldsymbol{U}^{\mathrm{t}}=\boldsymbol{U}$ or $V^{\mathrm{t}}=V$ with $\boldsymbol{a} \cdot \boldsymbol{U} \cdot \boldsymbol{a} \geq 0$ and $\boldsymbol{a} \cdot \boldsymbol{V} \cdot \boldsymbol{a} \geq 0$ and an orthogonal tensor $Q^{\mathrm{t}}=Q^{-1}$ as

$$
\begin{equation*}
A=Q \cdot U=V \cdot Q \tag{1.1.117}
\end{equation*}
$$

with $\mathrm{SO}(3)$ being the special orthogonal group, $Q \in \mathrm{SO}(3)$ if $\operatorname{det}(Q)=+1$, then Q is called proper orthogonal
a proper orthogonal tensor $Q \in S 0(3)$ has an eigenvalue equal to one $\lambda_{Q}=1$ introducing an eigenvector \boldsymbol{n}_{Q} such that

$$
\begin{equation*}
Q \cdot n_{Q}=n_{Q} \tag{1.1.118}
\end{equation*}
$$

let $\left\{\boldsymbol{n}_{Q i}\right\}_{i=1,2,3}$ be a Cartesian basis containing the vector \boldsymbol{n}_{Q}, then matrix representation of coordinates $Q_{i j}$

$$
\left[Q_{i j}\right]=\left[\begin{array}{ccc}
1 & 0 & 0 \tag{1.1.119}\\
0 & +\cos \varphi & +\sin \varphi \\
0 & -\sin \varphi & +\cos \varphi
\end{array}\right]
$$

geometric interpretation: Q characterizes a finite rotation around the axis n_{Q} with $Q \cdot n_{Q}=n_{Q}$, i.e. associated with $\lambda_{Q}=1$

