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1 Tensor calculus

Invariants of second order tensors
the following property of the scalar triple product

(u,v,w] =u- (v xw) (1.1.67)

introduces three scalar-valued quantities 14, [14, 114 asso-
ciated with the second order tensor A

[Au,v,w] + [u,Av,wl + [uv,Awl = Isu v w
u,A-v,A-w|+ [A-u,0, A w| +[Au,A-v,w]|= Ilxlu,v,w)

[A-u,A-v,A- w| = I114[u,v, w|
(1.1.68)

the proof of 114, I114 being invariant for different base sys-
tems {u, v, w} is similar to the one for I4

L4, 114, 1114 are called the three principal invariants of A
which can be expressed as

Ip = tr (A) daln =1
[y =3 [tr* (A) —tr (A%)]  9allp =I41—-A (1.1.69)
I1I4 = det(A) dq I114 = 1114 A

alternatively, we could work with the three basic invariants
I4, I[14, II14 of A which are more common in the context of

anisotropy
I_A = 141 . |
1y =A%:1 (1.1.70)

[T, = A3: 1
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1 Tensor calculus

Trace of second order tensors

trace tr (A) of a second order tensor A = u ® v introduces a
scalartr (A) € R

tr(u®ov)=u-v (1.1.71)
such that tr (A) is the sum of the diagonal entries A;; of A
tr(A) = tr(Aje; @ej)
= Ajjtr(ei®e;) = Ajje; - e; (1.1.72)
= Ajjdij = Aji = An+Axn+ Az
with
Iy = I = tr(A) (1.1.73)

properties of the trace of second order tensors

(
(
(4 ' (1.1.74)
(
(
(
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1 Tensor calculus

Determinant of second order tensors

determinant det(A) of second order tensor A introduces a
scalar det(A) € R

det(A) = det(Ai]') = % €ijk Cabc Ais A]'b Ape
= AnAnAsp+ AnAnAiz+ Az1AnAy (1.1.75)
— AnAxAz — ApAz Az — AzzAppAn

with
[114 = det(A) (1.1.76)
determinant defining vector product u x v
_ Uy v1 e _ _ UpU3 — U3V _
uxv=det|u v, e | = | uzv; — U3 (1.1.77)
us vz e3 U103 — U0

determinant defining scalar triple vector product [u, v, w|

up 01 W
u,v,w]=(uxv) - w=det| u, v, w, (1.1.78)
Uz 03 W3

properties of determinant of a second order tensors

det(I) =1

det (A') = det(A)

det (¢ A) = a®det(A) (1.1.79)
det(A-B) =

) = det(A) det(B)
et(u®v) =0

Q.
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1 Tensor calculus

Inverse of second order tensors
ifdet (A) #0
existence of inverse A~! of second order tensor A

A-A1T=AT1T.A=1
in particular
v=A-u Al v=u

properties of inverse of two second order tensors

(aAH T =atA

A-B)! = B 1.A!

determinant det(A!) of inverse of A
det(A™ 1) = 1/det(A)

adjoint A*Y of a second order tensor A
A = det(A) A™!

cofactor A% of a second order tensor A
A =det(A) A" = (A*)!

with

8Adet(A) = det(A) A_t = IIIA At = Acof
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1 Tensor calculus

1.1.3 Spectral decomposition
eigenvalue problem of arbitrary second order tensor A
A-ng=>Agny [A—AsI]-np=0 (1.1.87)
solution introduces eigenvector(s) n4; and eigenvalue(s) A 4;
det(A—Aa 1) =0 (1.1.88)
alternative representation in terms of scalar triple product
[A-u—Aau,A-v— A0, A-w—Agw] =0 (1.1.89)
removal of arbitrary factor [u, v, w] yields characteristic equa-
tion
Ay —Ip A3+ 114 A g — 1114 =0 (1.1.90)

roots of characteristic equations are principal invariants of A

Iy = tr (A)
Iy = 3 [tr* (A) — tr (A?)] (1.1.91)

I11, = det(A)

spectral decomposition of A
3
A= Apifig @ Ny, (1.1.92)
i=1

Cayleigh—-Hamilton theorem:
a tensor A satisfies its own characteristic equation

A’ — I A> + 1In A —III, I =0 (1.1.93)
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1 Tensor calculus

1.1.4 Symmetric — skew-symmetric decomposition

symmetric — skew-symmetric decomposition of second or-
der tensor A

1 1
A= 5[A + A'] + E[A — Af] = AY™ 4 AV (1.1.94)

with symmetric and skew-symmetric second order tensor
ASY™ and Askw

ASYm — (Asyrn)t Askw _ _(Askw)t (101.95)
e symmetric second order tensor A*™
1
ASYM — E[A + At] — ™ - A (1196)

upon double contraction symmetric fourth order unit tensor
[*Y™ extracts symmetric part of second order tensor

™ = 1[I+
X T (1.1.97)
[ = 7 [5ik5jl + 5il5jk]ei 09 ej X er X e
e skew—symmetric second order tensor A"
1
AT =S[A-AT=T"": A (1.1.98)

upon double contraction skew-symmetric fourth order unit
tensor IV extracts skew-symmetric part of second order

tensor
I[skw — 1 I— ][t
N f | | (1.1.99)
5 = 3 [6idji — dudjxlei © ej @ e @ e
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1 Tensor calculus

Symmetric tensors

symmetric part A%™ of a second order tensor A

1
AT = E[A + A'] A = (AY™)! (1.1.100)
alternative representation
AV =1"": A (1.1.101)

whereby symmetric fourth order tensor I*¥™ extracts sym-
metric part A*™ of second order tensor A

a symmetric second order tensor S = A®Y™ processes three
real eigenvalues { Ag; }i—1 3 and three corresponding orthog-
onal eigenvectors {ns;}i—123, such that the spectral repre-
sentation of S takes the following form

3
S =) Asi(ng ®ns;) (1.1.102)
i=1
three invariants Is, I1s, I1Is of symmetric tensor § = A%™
I[s = As1+ Ao+ Ags
I[Is = AspAsz+ AgzAst + Agi Ago (1.1.103)
IIls = Ag1AsyAss

square root /S, inverse S~!, exponent exp(S) and logarithm
In(S), of positive semi-definite symmetric tensor S for which
Asi 2 0

V'S = Y2, Asi (ngi @ ng;)
S1 =y A i @ ng;
- si (11 @ msi) (1.1.104)
exp (S) Yo, exp (Asi) (nsi @ ng;)
In(S) = ?:1 In (Asi) (nsi ® ns;)



1 Tensor calculus

Skew-symmetric tensors

skew-symmetric part A" of a second order tensor A

1
AT =S[A-AT AT = (A (1.1.105)

alternative representation
AT =TV . A (1.1.106)

whereby skew-symmetric fourth order tensor I**¥ extracts
skew-symmetric part A%V of second order tensor A

a skew-symmetric second order tensor W = A" posses
three independent entries, three entries vanish identically,
three are equal to the negative of the independent entries,
these define the axial vector w

1
w=— e W  w=—e-w (1.1.107)

associated with each skew-symmetric tensor W = Ak
W-p=wxp (1.1.108)
three invariants Iy, IIw, [1Iy of skew-symmetric tensor W
Iy = tr(W) =0
IIy = w-w (1.1.109)
[y = det(W) =0
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1 Tensor calculus

1.1.5 Volumetric — deviatoric decomposition

volumetric — deviatoric decomposition of second order ten-
sor A

A=A AdY (1.1.110)

with volumetric and deviatoric second order tensor A¥° and
Adev

tr(A") =tr(A)  tr(A%) =0 (1.1.111)
e volumetric second order tensor A°!
1
AV = 5[A NI=1T":A (1.1.112)

upon double contraction volumetric fourth order unit tensor
[V°! extracts volumetric part of second order tensor

I = 2I®I
X (1.1.113)
T = 36i0ue®e Qe e
e deviatoric second order tensor AdeY
1
A% = A — 5[A I I=1":A=0 (1.1.114)

upon double contraction deviatoric fourth order unit tensor
9 extracts deviatoric part of second order tensor

[dev — Jsym _ Jvol — Jsym _ %I QI

) ' , (1.1.115)
[dev — [5 5ik5]'l -+ 5 5i15]'k —3 51']'(5](1] e X €; X er X e
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1 Tensor calculus

1.1.6 Orthogonal tensors

a second order tensor Q is called orthogonal if its inverse
Q! isidentical to its transpose Q!

Q=0 =N Q-Q=0Q-Q'=1I (1.1.116)

a second order tensor A can be decomposed multiplicatively
into a positive definite symmetric tensor U' = U or V! =V
witha-U-a >0and a-V -a > 0 and an orthogonal tensor

Q'=Qlas

A=Q-U=V-Q (1.1.117)
with S0(3) being the special orthogonal group, Q € S0(3) if
det(Q) = +1, then Q is called proper orthogonal

a proper orthogonal tensor Q € S0(3) has an eigenvalue
equal to one Ay = 1 introducing an eigenvector no such
that

Q "ng = ng (1.1.118)

let {ng;}i—123 be a Cartesian basis containing the vector ng,
then matrix representation of coordinates Q;;

1 0 0
[Qij] = | 0 +cosgp +sing (1.1.119)
0 —sing +cos¢@

geometric interpretation: Q characterizes a finite rotation

around the axis ng with Q - ng = ng, i.e. associated with
Ag =1
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