1 ME338A - Homework

 due $01 / 21 / 10,12: 15 \mathrm{pm}, 530-127$late homework can be dropped in a box in front of durand 217, please mark clearly with date and time @drop off, we will take off $1 / 10$ of points for each 24 hours late

1.1 Index vs tensor notation

Write the following expressions
$1.1 \quad t_{i}=\sigma_{j i} n_{j}$
1.2 $W=\frac{1}{2} \sigma_{i j} \varepsilon_{i j}$
$1.3 \quad p=\sigma_{i i}$
$1.4 \quad \sigma_{i j}^{\mathrm{dev}}=2 \mu \varepsilon_{i j}^{\mathrm{dev}}$
$1.5 \quad \bar{\epsilon}_{i j}^{\mathrm{dev}}=Q_{k i} \epsilon_{k l} Q_{l j}$
$1.6 \quad S_{i j}=\frac{1}{2}\left[A_{i j}+A_{j i}\right]$
$1.7 \quad \frac{\partial \sigma_{i j}}{\partial x_{j}}+\rho b_{i}=\rho \ddot{x}_{i}$
(i) in long form for each component $i, j=1,2,3$ and
(ii) in compact tensor notation, and
(iii) try to find out what they mean.

1.2 Skalar and dyadic products

Given the second order tensor \boldsymbol{A} and the vectors \boldsymbol{u} and \boldsymbol{v},

$$
\begin{array}{ll}
\boldsymbol{A}=A_{i j} \boldsymbol{e}_{i} \otimes \boldsymbol{e}_{j} & A_{i j}=\left[\begin{array}{ccc}
4 & 1 & 0 \\
0 & 3 & 1 \\
2-1 & 5
\end{array}\right] \\
\boldsymbol{u}=u_{i} \boldsymbol{e}_{i} & u_{i}=[4,1,2]^{\mathrm{t}} \\
\boldsymbol{v}=v_{i} \boldsymbol{e}_{i} & v_{i}=[1,3,1]^{\mathrm{t}}
\end{array}
$$

2.1 determine the expression $\boldsymbol{u} \cdot \boldsymbol{A} \cdot \boldsymbol{v}$
2.2 determine the expression $\operatorname{tr}([\boldsymbol{A} \cdot \boldsymbol{v}] \otimes \boldsymbol{u})$
2.3 determine the expression $\boldsymbol{v} \cdot \boldsymbol{A}^{\mathrm{t}} \cdot \boldsymbol{u}$
2.4 determine the expression $[\boldsymbol{v} \otimes \boldsymbol{u}]: \boldsymbol{A}^{\mathrm{t}}$
2.5 determine the expression $\boldsymbol{A}:[\boldsymbol{u} \otimes \boldsymbol{v}]$
2.6 what is special about the second order tensor $[\boldsymbol{u} \otimes \boldsymbol{v}]$ and what does that imply for its inverse $[\boldsymbol{u} \otimes \boldsymbol{v}]^{-1}$
2.7 find at least one more expression for $\boldsymbol{u} \cdot \boldsymbol{A} \cdot \boldsymbol{v}$
2.8 use the index notation to show that the expressions [2.1] to [2.5] are identical for arbitrary A, u, and v

1.3 Volumetric-deviatoric decomposition

Given the second order tensor A,

$$
A=A_{i j} \boldsymbol{e}_{i} \otimes \boldsymbol{e}_{j} \quad[A]_{i j}=\left[\begin{array}{rrr}
4 & 1 & 2 \\
1 & 2 & -1 \\
2 & -1 & 4
\end{array}\right]
$$

determine
3.1 the first invariant $I_{A}=\operatorname{tr}(\boldsymbol{A})$
3.2 the second invariant $I I_{A}=\frac{1}{2}\left[\operatorname{tr}^{2}(A)-\operatorname{tr}\left(A^{2}\right)\right]$
3.3 the third invariant $I I I_{A}=\operatorname{det}(A)$
3.4 the volumetric part A^{vol}
3.5 the deviatoric part $A^{\text {dev }}$

1.4 Scalar products

Given the second order tensor

$$
\sigma_{i j}=2 \mu \varepsilon_{i j}+\lambda \varepsilon_{k k} \delta_{i j}
$$

4.1 show that $W=\frac{1}{2} \sigma_{i j} \varepsilon_{i j}=\mu \varepsilon_{i j} \varepsilon_{i j}+\frac{1}{2} \lambda \varepsilon_{k k}^{2}$
4.2 show that $p=\sigma_{i j} \sigma_{i j}=4 \mu^{2} \varepsilon_{i j} \varepsilon_{i j}+\varepsilon_{k k}^{2}\left[4 \mu \lambda+3 \lambda^{2}\right]$
4.3 rewrite [4.1] and [4.2] in compact tensor notation
4.4 try to find a physical interpretation for σ, ε and W

1.5 Symmetric-skew-symmetric decomposition

Given the second order tensor \boldsymbol{A},

$$
A=A_{i j} \boldsymbol{e}_{i} \otimes \boldsymbol{e}_{j} \quad[A]_{i j}=\left[\begin{array}{rrr}
5 & 6 & 2 \\
2 & 5 & -3 \\
-2 & 3 & 4
\end{array}\right]
$$

5.1 determine its symmetric part $S=A^{\text {sym }}$
5.2 determine its skew symmetric part $W=A^{\text {skw }}$
5.3 show that $S: W=0$
5.4 determine the axial vector \boldsymbol{w} of its skew symmetric part \boldsymbol{W}
5.5 determine the square S^{2} of its symmetric part S
5.6 determine the square root \sqrt{S} of its symmetric part S (hint: one of the eigenvalues of S is $\lambda_{S 1}=1$)
5.7 control your results with $(\sqrt{S})^{2}=S$
you may use a program like matlab to control your results, but the derivations must be clearly documented on paper

