
BIOMECH PREPRINT SERIES
Paper No. 7

November 2000

Biomechanics of Soft Tissue

G.A. Holzapfel

COMPUTATIONAL
BIOMECHANICS
Schiesstattgasse 14B
A - 8010 Graz, Austria
http://www.cis.tu-graz.ac.at/biomech

START-Project Y74-TEC

Institute for
Structural Analysis

Graz University
of Technology



���������
	
�
������	������������������������
� �

!#"%$'&)(*$%+-,/.103254768(59;:�"<4
=?>A@CB?DFE8GIH%JK>�LAGNMNO�P%Q
R*J�SCT8EUP%VWP8X<O

Y E�LAMNGNMNZ8MWJ�Q[P'>]\1MI>[Z�SCMNZ%>A@CV5^FEU@CVIO�LAG_La`�bcP<d�e�Z8Mf@KMNGfP<EU@CVhg�GfP<d�J�SCTU@KE8GWSiL
\5SCT8GWJiLjLAMf@KMNMfX8@kLjL�J/lnm�o7g
^F`5p'q
lrq�=?>A@CB's'^FZ�LAMI>[Gf@

t�u*u
v%wkxyv%z|{h}~t���w<z*v'�3�7����xyv��C���7���_��v

� t��|�|��������������tc���c�F��t����F� � t����j���
���5�*�7�7�hv%wkx �¡�*z*v<�[�cw'�hz¢��xy��u
vix��£�7v��

v%z5�_�£v%z�{h}/¤kv%w'���¥v<��wi�_�_xjv�¦8���¡��§A¨
w'�<�
w'�;¦8�;xyw'�*�8v

© ,|ªF«
¬®­#¯±°�­#² © ¬
² ©
³

´�µ¶�¥w'�_�£z5�_�_}
·;µ¶��w'�<¸�¹�xj�1ºh�hz¢�5�¢�7��v��y�_x�ºh�<�7º5xjv��5»��n�5»A���£�[�K�yº�v���¼��%�5�7�½w'¹*v<�
w'�hz¢v<�£w8�y�£�_�

¾�µ�¿�v<�hvixyw'���3v<�<�
w'�*�_��w'���<�
wkxnwi�<�½vix��[�y�7�7���5»��r�5»A�
�£�½�C�yº�v��
À)µ¶�|v��n�'x��fuh�7�£�5�¢�5»a�7��v��3�*z*v<�
Á µ¶�
viu*xjv��rv<�5�½wi�£�WÂ*v�v'Ã�w'�~u��£v5Ä8tÅ�-�*z*v<��»���x �7��v�wkx��½vix�}
Æ µ¶��z*v<�5�£�7Ç;��wi�£�7�5�/�5»]�_��v��-wi�½vix��½w'�hu�wkxnwi�-v'�£vixr�
È µ � ��ÉÊ�½��º��rv��_�
Ë
µ¶�;wk{��£v��5»au�wkxyw'�-v'�£vixr�
Ì�µ¶�
v<»�vixyv<�*�%v��

Í7Î�ÏÑÐ<ÒjÐ<ÓyÏNÒyÔ�Õ½Ök×i×8ØCÙ£Ú*Û7Ø�Ù;ÚÑÜiÏWÕaÙ½ÝKÕ½ÝKÒ�Ù½ÓyÜ¶Þ�ÒrÕa×iÙ[Ø�ßiÏÑà'Ýnà�á<â¶ÚãÜ<Ý]äaå�æ�çIèêéìëkí¶î<ïKéìðyí<ïnðcñ<ò<åCí<óië'çIéãò�í�ôfñ)õöñh÷;ÖiÐ<àiÝyÙ;î�ø�ä�ù]øCú
ähû)ë%èfó�ü�ýnþ8ú£øiÿ����



Biomechanics of Soft Tissue

by Gerhard A. Holzapfel
Institute for Structural Analysis
Computational Biomechanics
Graz University of Technology
8010 GRAZ – AUSTRIA

1. Validity
An efficient constitutive formulation approximates all types of soft tissues with a reasonable accu-
racy over a large strain range. We request a simple constitutive equation with only a few material
parameters involved that allow an ‘explanation’ of the material response of tissues in terms of their
structure. In addition, we request that the constitutive formulation is fully three-dimensional and
consistent with both mechanical and mathematical requirements, applicable for arbitrary geome-
tries and suitable for use within the context of finite element methods in order to solve complex
initial boundary-value problems.

The presented general model is a fully three-dimensional material description of soft tissues for
which nonlinear continuum mechanics is used as the fundamental basis [10], [18]. It has the special
feature that it is based partly on histological information (i.e. the microscopic structure of organs
and tissues). The general model describes the highly nonlinear and anisotropic behavior of soft
tissues as composites reinforced by two families of collagen fibers. The constitutive framework is
based on the theory of the mechanics of fiber-reinforced composites [26] and is suitable to describe
a wide variety of physical phenomena of soft tissues. The performance and the physical mechanism
of the model is presented in [11]. As a representative example, the general model for soft tissues
is specified to predict the mechanical response of healthy and young arteries under physiological
loading conditions [12]. The model neglects active components, i.e. contracting elements with
biochemical energy supply which are controlled by biological mechanisms, and is concerned with
the description of the passive state of arteries.

The models are suitable for predicting the anisotropic elastic response of soft tissues in the large
strain domain. A suitable constitutive and numerical model, which is general enough to describe
the finite viscoelastic domain, is documented in [11]. The presented models do not consider acute
and long-term changes in geometry and/or the mechanical response of tissues due to, for example,
drugs, ageing and disease. When soft tissues are subjected to loads that are beyond the physio-
logical range the load-carrying fibers of the tissue slip relative to each other. In clinical procedures
tissues may undergo irreversible (plastic) deformations [12] which are of medical importance. Con-
stitutive equations for describing plastic deformations of, for example, arteries are proposed in [27],
[8].

2. Background on the structure of soft tissues – collagen and elastin
What do we mean by soft tissues? A primary group of tissue which binds, supports and protects
our human body and structures such as organs is soft connective tissue. In contrary to other tissues,
it is a wide-ranging biological material in which the cells are separated by extracellular material.
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Connective tissues may be distinguished from hard (mineralized) tissues such as bones for their
high flexibility and their soft mechanical properties. In this article we are mainly concerned to
say something about it from the points of view of material science, biomechanics and structural
engineering (for more details see, for example, [6], Chapter 7).

Examples for soft tissues are tendons, ligaments, blood vessels, skins or articular cartilages
among many others. Tendons are muscle-to-bone linkages to stabilize the bony skeleton (or to
produce motion), while ligaments are bone-to-bone linkages to restrict relative motion. Blood
vessels are prominent organs composed of soft tissues which have to distend in response to pulse
waves. The skin is the largest single organ (16% of the human adult weight). It supports internal
organs and protects our body. Articular cartilages form the surface of body joints (which is a layer
of connective tissue with a thickness of 1-5 mm) and distribute loads across joints and minimize
contact stresses and friction.

Soft connective tissues of our body are complex fiber-reinforced composite structures. Their
mechanical behavior is strongly influenced by the concentration and structural arrangement of con-
stituents such as collagen and elastin, the hydrated matrix of proteoglycans, and the topographical
site and respective function in the organism.

Collagen. Collagen is a protein which is a major constituent of the extracellular matrix of
connective tissue. It is the main load carrying element in a wide variety of soft tissues and is very
important to human physiology (for example, the collagen content of (human) achilles tendon is
about 20 times that of elastin).

Collagen is a macromolecule with length of about 280 nm. Collagen molecules are linked to
each other by covalent bonds building collagen fibrils. Depending on the primary function and the
requirement of strength of the tissue the diameter of collagen fibrils varies (the order of magnitude
is 1.5 nm [17]). In the structure of tendons and ligaments, for example, collagen appears as parallel
oriented fibers [1], while many other tissues have an intricate disordered network of collagen fibers
embedded in a gelatinous matrix of proteoglycans.

More than 12 types of collagen have been identified [17]. The most common collagen is type
I, which can be isolated from any tissue. It is the major constituent in blood vessels. The rod-like
shape of the collagen molecule comes from three polypeptide chains which are composed in a right-
handed triple-helical conformation. Most of the collagen molecule consists of three amino acids;
glycine (33%), which enhances the stability of the molecule, proline (15%) and hydroxyproline
(15%) [23].

The intramolecular crosslinks of collagen gives the connective tissues the strength which varies
with age, pathology, etc. (for a correlation between the collagen content in the tissue, % dry weight,
and its ultimate tensile strength see Table 1). The function and integrity of organs are maintained
by the tension in collagen fibers. They shrink upon heating due to breakdown of the crystalline
structure (at 65 � C, for example, mammalian collagen shrinks to about one-third of its initial length,
[6], p. 263).
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Material Ultimate tensile Ultimate tensile Collagen Elastin
strength [Mpa] strain [%] (% dry weight) (% dry weight)

Tendon 50-100 10-15 75-85 ���
Ligament 50-100 10-15 70-80 10-15

Aorta 0.3-0.8 50-100 25-35 40-50
Skin 1-20 30-70 60-80 5-10

Articular Cartilage 9-40 60-120 40-70 -

Table 1: Mechanical properties [25], [6], [15] and associated biochemical data [30] of some
representative organs mainly consisting of soft connective tissues.

Elastin. Elastin, like collagen, is a protein which is a major constituent of the extracellular
matrix of connective tissue. It is present as thin strands in soft tissues such as skin, lung, ligamenta
flava of the spine and ligamentum nuchae (the elastin content of the latter is about 5 times that of
collagen).

The long flexible elastin molecules build up a three-dimensional (rubber-like) network, which
may be stretched to about 2.5 of the initial length of the unloaded configuration. In contrast to col-
lagen fibers, this network does not exhibit a pronounced hierarchical organization. As for collagen,
33% of the total amino acids of elastin consists of glycine. However, the proline and hydroxyproline
contents are much lower than in collagen molecules.

The mechanical behavior of elastin may be explained within the concept of entropic elasticity.
As for rubber, the random molecular conformations, and hence the entropy, change with deforma-
tion. Elasticity arises through entropic straightening of the chains, i.e. a decrease of entropy, or an
increase of internal energy (see, for example, [9], [10], Chapter 7.1). Elastin is essentially a lin-
early elastic material (tested for the ligamentum nuchae of cattle). It displays very small relaxation
effects (they are larger for collagen).

3. General mechanical characteristic of soft tissues
Before describing a model for soft tissues it is beneficial and instructive to give some insight in their
general mechanical characteristic. Soft tissues behave anisotropically because of their fibers which
tend to have preferred directions. In a microscopic sense they are non-homogeneous materials
because of their composition. The tensile response of soft tissue is nonlinear stiffening and tensile
strength depends on the strain rate. In contrast to hard tissues, soft tissues may undergo large
deformations. Some soft tissues show viscoelastic behavior (relaxation and/or creep), which has
been associated with the shear interaction of collagen with the matrix of proteoglycans [16] (the
matrix provides a viscous lubrication between collagen fibrils).

In a simplified way we explain here the tensile stress-strain behavior for skin, an organ consist-
ing mainly of connective tissues, which is representative of the mechanical behavior of many (col-
lagenous) soft connective tissues. For the connective tissue parts of the skin the three-dimensional
network of fibers appears to have preferred directions parallel to the surface. However, in order to
prevent out-of-plane shearing, some fiber orientations also have components out-of-plane.

Figure 1 shows a schematic diagram of a typical J-shaped (tensile) stress-strain curve for skin.
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Figure 1: Schematic diagram of a typical (tensile) stress-strain curve for skin showing the
associated collagen fiber morphology.

This form, representative for many soft tissues, differs significantly from stress-strain curves of
hard tissues or from other types of (engineering) materials. In addition, Figure 1 shows how the
collagen fibers straighten with increasing stress.

The deformation behavior for skin may be studied in three phases I, II and III:
Phase I. In the absence of load the collagen fibers, which are woven into rhombic-shaped

pattern, are in relaxed conditions and appear wavy and crimped. Unstretched skin behaves approx-
imately isotropically. Initially low stress is required to achieve large deformations of the individual
collagen fibers without requiring stretch of the fibers. In phase I the tissue behaves like a very soft
(isotropic) rubber sheet, and the elastin fibers (which keep the skin smooth) are mainly responsible
for the stretching mechanism. The stress-strain relation is approximately linear, the elastic modulus
of skin in phase I is low (0.1-2 MPa).

Phase II. In phase II, as the load is increased, the collagen fibers tend to line up with the load
direction and bear loads. The crimped collagen fibers gradually elongate and they interact with
the hydrated matrix. With deformation the crimp angle in collagen fibrils leads to a sequential
uncrimping of fibrils. Note, that the skin is normally under tension in vivo.

Phase III. In phase III, at high tensile stresses, the crimp patterns disappear and the collagen
fibers become straighter. They are primarily aligned with one another in the direction in which the
load is applied. The straightened collagen fibers resist the load strongly and the tissue becomes
stiff at higher stresses. The stress-strain relation becomes linear again. Beyond the third phase the
ultimate tensile strength is reached and fibers begin to break.

The mechanical properties of soft tissues depend strongly on the topography, risk factors, age,
species, physical and chemical environmental factors such as temperature, osmotic pressure, pH,
and on the strain rate. The material properties are strongly related to the quality and completeness
of experimental data, which come from in vivo or in vitro tests having the aim of mimicking real
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loading conditions. Therefore, to present specific values for the ultimate tensile strength and strain
of a specific tissue is a difficult task. Nevertheless, Table 1 attempts to present ranges of values of
mechanical properties and collagen/elastin contents (% dry weight) in some representative organs
mainly consisting of soft connective tissues.

4. Description of the model
At any referential position X of the tissue we postulate the existence of a Helmholtz free-energy
function � . We assume the decoupled form�	�	
�� X 
������ ��� X 
 C � A ��� A ����� (1)

where 
 is a purely volumetric (dilatational) contribution and � is a purely isochoric (volume-
preserving) contribution to the free energy � . Here C � F � F denotes the modified right Cauchy-
Green tensor and F ����� ��� � F is the unimodular (distortional) part of the deformation gradient F,
with �!�#"%$�& F ')( denoting the local volume ratio. In addition, in eq. (1), * A �+� A ��, is a set of
two (second-order) tensors which characterize the anisotropic properties of the tissue at any X. The
structure tensors A � and A � are defined as the tensor products a -/.10 a -/. , where a -2. , 34�657�+8 , are two
unit vectors characterizing the orientations of the families of collagen fibers in the (undeformed)
reference configuration of the tissue (see Figure 2).

X

a

a

0 1

0 2

Figure 2: Arrangement of collagen fibers in the reference configuration characterized by two
unit vectors a -9� , a -/� at position X.

Since most types of soft tissues are regarded as incompressible (for example, arteries do not
change their volume within the physiological range of deformation [2]) we now focus attention on
the description of their isochoric deformation behavior characterized by the energy function � . We
suggest the simple additive split�:� �<;>=@?/� X 
BAC �D��� �FE GH;>=I?2� X 
JAC�K �LACNM � (2)

of � into a part �F;>=@? associated with isotropic deformations and a part �OE GH;>=@? associated with
anisotropic deformations. This is sufficiently general to capture the salient mechanical feature of
soft tissue elasticity as described in Section 3 (a more general constitutive framework is presented
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in [8], [11], [12]). In relation (2) we used AC �P� C Q I for the first invariant of tensor C (I is the
second-order unit tensor), and the definitionsAC�K � C � a -R�S�T� C Q A ��� ACNM � C � a -U�1�V� C Q A � (3)

of the invariants, which are stretch measures for the two families of collagen fibers (see, for exam-
ple, [26], [10]). The invariants AC1K and ACNM are squares of the stretches in the directions of a -9� and
a -/� , respectively. Isotropy is described through the invariant AC � and anisotropy through AC�K and ACNM .

Since the (wavy) collagenous structure of tissues is not active at low stresses (it does not store
strain energy) we associate �W;>=@? with the mechanical response of the non-collagenous matrix of the
material (which is less stiff than its elastin fiber constituent). To determine the non-collagenous
matrix response we propose to use the isotropic neo-Hookean model according to�F;>=@?X�ZY8 �UAC �\[]�9�1� (4)

where Y '!( is a stress-like material parameter. However, to model the (isotropic) non-collagenous
matrix material any Ogden-type elastic material may be applied [18].

According to morphological findings at highly-loaded tissues the families of collagen fibers
become straighter and the resistance to stretch is almost entirely due to collagen fibers (the tissue
becomes stiff). Hence, the strain energy stored in the collagen fibers is taken to be governed by the
polyconvex (anisotropic) function�FE GH;>=I?^� _ �8 _ � ` $�acb�d _ �2�UAC1K [!52� �fe [!5cg<� _ �8 _ K ` $�acb4d _ K �UACNM [!52� �Se [!5cgh� (5)

where
_ �i'�(%� _ �j'�( are stress-like material parameters and

_ �k'�(%� _ K '�( are dimensionless
parameters. According to relations (2), (4), (5), the collagen fibers do not influence the mechanical
response of the tissue in the low stress domain. Due to the crimp structure of collagen fibers
we assume that they do not support compressive stresses which implies that they are inactive in
compression. Hence the relevant part of the anisotropic function (5) is omitted for this case. If,
for example, AC1Kml 5 and ACNMnl 5 , then the soft tissue responds similarly to a rubber-like (purely
isotropic) material described by the energy function (4). However, in extension, that is when AC1K ':5
or ACNM '	5 , the collagen fibers are active and energy is stored in the fibers.

Function (1) enables the Cauchy stress tensor, denoted o , to be derived in the decoupled formop�qoXrs?ut7� o with oXrs?utB�wv I � op�	8R� � � "B$1xzy F { �{ C
F ��| � (6)

with the volumetric contribution ohrs?ut and the isochoric contribution o to the Cauchy stresses. In the
stress relation (6), vk�p"}
^~U"�� denotes the hydrostatic pressure and "B$�x����9� furnishes the deviatoric
operator in the Eulerian description. The operator is defined as "B$�x����9�T�����9��[ �� d@���9��Q I e I, so that"B$1x4���9��Q I �:( .

Using the additive split (2) and particularizations (4), (5), we get with (6) � an explicit consti-
tutive expression for the isochoric behavior of soft connective tissues in the Eulerian description,
i.e. op� Y "B$1x b �)�.�� KH� M 8 �<.�"B$1x4� a .B0 a .��1� (7)
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where b � FF � denotes the modified left Cauchy-Green tensor,

� K ��{ �FE GH;>=I?{ AC�K � _ ��� AC�K [�52� ` $�acb4d _ �2� AC�K [�52� � e [�5cgh� (8)

� M � { �FE GH;>=I?{ ACNM � _ �2�UACNM [�52� ` $�acb4d _ K �UACNM [�52� � e [�5 g (9)

are (scalar) response functions and a .X� Fa -/. , 3F��57��8 , are the Eulerian counterparts of the unit
vectors a -2. .

The specific form of the proposed constitutive equation (7) requires the five material parametersY � _ ��� _ ��� _ ��� _ K whose interpretations can be partly based on the underlying histological structure,
i.e. matrix and collagen of the tissue. Note that in (7), orthotropic (

_ �T� _ � , _ �^� _ K
), transversely

isotropic (
_ �^�6( or

_ ���6( ) and isotropic hyperelastic descriptions (
_ �^� _ ���6( ) at finite strains

are included as special cases.

5. Representative example: A model for the artery
In this section we describe a model for the passive state of the healthy and young artery (no
pathological changes in the intima, which is the innermost arterial layer frequently affected by
atherosclerosis) suitable for predicting three-dimensional distributions of stresses and strains under
physiological loading conditions with reasonable accuracy. It is a specification of the constitutive
framework for soft tissues stated in previous section. For an adequate model of arteries incorporat-
ing the active state (contraction of smooth muscles) see [22]. For a detailed study of the mechanics
of arterial walls see the extensive review [13].

Experimental tests show that the elastic properties of the media (middle layer of the artery) and
adventitia (outermost layer of the artery) are significantly different [31]. The media is much stiffer
than the adventitia. In particular, in the unloaded configuration the mean value of Young’s modulus
for the media, for several pig thoracic aortas, is about an order of magnitude higher than that of
the adventitia [32]. In addition, the arterial layers have different physiological tasks, and hence the
artery is modeled as a thick-walled elastic circular tube consisting of two layers corresponding to
the media and adventitia. In a young non-diseased artery the intima (innermost layer of the artery)
exhibits negligible wall-thickness and mechanical strength.

Each tissue layer is treated as a composite reinforced by two families of collagen fibers which
are symmetrically disposed with respect to the cylinder axis. Hence, each tissue layer is considered
as cylindrically orthotropic (already postulated in the early work [20]) so that a tissue layer behaves
like a so-called balanced angle-ply laminate. We use the same forms of strain-energy functions (4),
(5) for each tissue layer (each layer responds with similar mechanical characteristics) but use a
different set of material parameters. Hence, eq. (2) takes on the specified form

�<�:��Y �8 �UAC ��[��9��� _ ���8 _ �/� �.�� KH� M ` $1acb4d _ �U���UAC .s�][!52� �fe [!5cg�� (10)

�<��� Y �8 �UAC ��[]�9��� _ ���8 _ �/� �.�� KH� M ` $1acb4d _ �2���UAC .s�k[!5�� � e [!5 g�� (11)
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Figure 3: Load-free configuration of an idealized artery modeled as a thick-walled circular
tube consisting of two layers, i.e. the media and adventitia.

We end up with a two-layer model incorporating six material parameters, three for the media � ,
i.e. Y � ,

_ �N� ,
_ �2� , and three for the adventitia � , i.e. Y � ,

_ �N� ,
_ �/� .

The invariants, associated with the anisotropic parts of the two tissue layers are defined byAC1K�� � C Q A � � and ACNMN� � C Q A � � �R���	���H� . The structure tensors A � � � A � � are given by

A � � � a -R� � 0 a -9� � � A � � � a -/� � 0 a -/� � � �P�	���H� � (12)

Employing a cylindrical coordinate system, the components of the unit (direction) vectors a -9� � and
a -/� � read in matrix notation

d a -9� � e � �� (�N� �L¡ ��f¢@£�¡ �¥¤¦ � d a -U� � e � �� (���7�L¡ �[ �f¢@£X¡ �z¤¦ � ���:���H�P� (13)

and ¡ �
, �§�����f� , are the angles between the collagen fibers and the circumferential direction in

the media and adventitia (see Figure 3). Small components of the (collagen) fiber orientation in the
radial direction, as, for example, reported for human brain arteries [5], are neglected.

Residual stresses. It has been known for some years that arteries which are excised from the
body and not subjected to any loads are not stress-free (or strain-free) [28]. If, for example, the
media and adventitia are separated and cut in a radial direction the two arterial layers will spring
open to form open (stress-free) sectors, which, in general, have different opening angles (see, for
example, the experimental studies [29] for bovine specimens). In general, the residual stress-state
is very complex, and residual stresses (strains) in the axial direction may also occur. Note that
residual stresses result from growth and remodelling mechanisms [24], [21].

By considering the arterial layers as circular cylindrical tubes we may characterize the reference
(stress-free) configuration of one arterial layer as a circular sector, as shown in Figure 4. For each
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Figure 4: Cross-sectional representation of one arterial layer at the reference (stress-free) and
load-free (stressed) configurations.

arterial layer of the blood vessel a certain opening angle ¨ can be found by experimental methods.
The importance of incorporating residual stresses associated with the load-free (but stressed) con-
figuration into the computation has been emphasized in, for example, [4], [12]. Considerations of
residual strains has a strong influence on the global pressure/radius response of arteries and also
on the stress and strain distributions across the deformed arterial wall. For analytical studies of
residual stresses see, for example, the works [14], [22], which contain further references.

Therefore, it is essential to incorporate the residual stresses inherent in many biologic tissues.
One possible approach to consideration of the influence of residual stresses on the overall three-
dimensional stress behavior is to measure the strain energy from the load-free (stressed) configura-
tion and to include the residual stresses [19]. Another approach is to start with the energy function
relative to the stress-free (and fixed) configuration, as assumed in the presented models, and deter-
mine the deformation required to reach the load-free (stressed) configuration. Figure 4 shows the
cross-sectional respresentation of one arterial layer at the load-free configuration obtained from the
reference configuration by pure bending.

With the condition of incompressibility, the radius © of an arterial layer in the load-free config-
uration may be computed from the radius ª of the associated reference configuration as [12]

©�� ª � [¥ª �;_%«J¬ �w© �; � _ � 8/­82­m[]¨ � (14)

where ©N; , ª�; are the internal radii associated with the two configurations. The (constant) axial
stretch is denoted by

«�¬
and the parameter

_
is a convenient measure of the tube opening angle in

the stress-free configuration.

6. Identification of the material parameters
Preferred directions in soft tissues are well specified by the orientation of prolate cell nuclei. They
can be identified in microphotographs of appropriately stained histological sections. By visual
inspection there exists a high directional correlation between smooth muscle cells and collagen
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fibers. Hence, the (bell-shaped distribution of) collagen fiber orientations may be obtained from an
image processing analysis of stained histological sections. The angle ¡ (and thus the unit vectors
a -9��� a -/� ) may be identified as the mean value of the corresponding statistical distribution.

Values of the material parameters associated with the model for soft tissues are then obtained
by fitting the equations to the experimental data of the soft tissue of interest by using standard
nonlinear fitting algorithms, such as the Levenberg-Marquardt algorithm. For the case that the
mean values of the orientation of cell nuclei (collagen fiber) may not be identified experimentally,
it is suggested to treat the collagen fiber orientations as additional (phenomenological) ‘material’
parameters.

7. How to use it
The energy functions are well-suited for use in nonlinear finite element software, which enables
complex boundary-value problems to be solved. Aspects of finite element implementation and nu-
merical analysis of the model are presented in [11]. Furthermore, computations may be carried out
with some of the commercially available mathematical software-packages such as Mathematica or
Maple, which allow symbolic computation. Based on Mathematica, in [12] a numerical technique
for solving the bending, axial extension, inflation and torsion problem of an artery is described.

8. Table of parameters
Values of the parameters correspond to the functions (10), (11) and are given for a representative
carotid artery from a rabbit (experiment no. 71 in [7]). The material parameters Y � _ ��� _ � and the
angles of collagen fibers ¡ are summarized in Table 2.

Media AdventitiaY � � � � (7(7(7(Ld>®°¯�± e Y �²� ( � �7(7( (Ld³®°¯\± e_ �N� � 8 � �7´7�98Bd>®°¯�± e _ �N�²� ( �¶µ ´98U(Ld³®°¯\± e_ �/� � ( �¸· �7¹7�Ldº[ e _ �/�²� ( �¶» 575�8Bd�[ e¡ � � 8 ¹ � ( � ¡ �²� ´98 � ( �
Table 2: Table of parameters for a carotid artery from a rabbit (experiment no. 71 in [7]) in

respect of eqs. (10), (11).

In the adventitia many collagen fibers run closer to the axial direction of the artery, while in the
media the collagen fibers tend to run around the circumference. The fiber angles ¡ are meant to
be associated with the reference (stress-free) configuration. Note that the change of the through-
thickness mean value of the angle due to bending to the load-free (stressed) configuration (see
Figure 4) is small so that it has a negligible influence on the stress-strain analysis of arteries.

By using a wall thickness of 0.39 mm (adopted from [3]), and making the assumption that the
media occupies 87~ � of the arterial wall thickness, the parameters in Table 2 predict the characteristic
orthotropic behavior of a carotid artery under combined bending, inflation, axial extension and
torsion, as documented in [12].
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