2.10 Some problems...

Problem: Let Q be a proper orthogonal tensor such that

\[
Q \cdot Q^t = I \quad \det(Q) = 1
\]

possessing the real eigenvalue $\lambda = 1$ with the associated eigenvector n.

\[
Q \cdot n = \lambda n = n
\]

Let p and q be unit vectors forming an orthonormal basis with n such that

\[
\det|n, p, q| = |n, p, q| = 1.
\]

Use the following representation of a proper orthogonal tensor

\[
Q = n \otimes n + [p \otimes p + q \otimes q] \cos(\theta) - [p \otimes q - q \otimes p] \sin(\theta)
\]

to show that the first and second invariant of Q take the following form.

\[
I_Q = II_Q = 1 + 2 \cos(\theta)
\]

Hint: Make use of the following identities.

\[
\begin{align*}
[Q \cdot n, p, q] + [n, Q \cdot p, q] + [n, p, Q \cdot q] &= I_Q[n, p, q] \\
[n, Q \cdot p, Q \cdot q] + [Q \cdot n, p, Q \cdot q] + [Q \cdot n, Q \cdot p, q] &= II_Q[n, p, q] \\
[Q \cdot n, Q \cdot p, Q \cdot q] &= III_Q[n, p, q]
\end{align*}
\]

First rewrite first and second invariant!

First invariant with $Q \cdot n = n$ and $\det|n, p, q| = 1$

\[
I_Q = [Q \cdot n, p, q] + [n, Q \cdot p, q] + [n, p, Q \cdot q]
\]

\[
= [n, p, q] + [n, Q \cdot p, q] + [n, p, Q \cdot q]
\]

\[
= 1 + [n, Q \cdot p, q] + [n, p, Q \cdot q]
\]
Second invariant with \(Q \cdot n = n \)

and third invariant \([Q \cdot n, Q \cdot p, Q \cdot q] = \det Q = lll_Q\)

\[
ll_Q = [n, Q \cdot p, Q \cdot q] + [Q \cdot n, p, Q \cdot q] + [Q \cdot n, Q \cdot p, q]
= [Q \cdot n, Q \cdot p, Q \cdot q] + [n, p, Q \cdot q] + [n, Q \cdot p, q]
= 1 + [n, p, Q \cdot q] + [n, Q \cdot p, q]
\]

Now, evaluate \(Q \cdot p \) and \(Q \cdot q \)

\[
Q \cdot p = n \otimes n \cdot p + [p \otimes p \cdot q + q \otimes q \cdot p] \cos(\theta)
- [p \otimes q \cdot q - q \otimes p \cdot q] \sin(\theta)
\]

\[
Q \cdot q = n \otimes n \cdot q + [p \otimes p \cdot q + q \otimes q \cdot q] \cos(\theta)
- [p \otimes q \cdot q - q \otimes p \cdot q] \sin(\theta)
\]

with \(n, p \) and \(q \) being orthogonal unit vectors

\[
Q \cdot p = \cos(\theta)p + \sin(\theta)q
\]

\[
Q \cdot q = \cos(\theta)q - \sin(\theta)p
\]

thus

\[
l_Q = 1 + [n, [\cos(\theta)p + \sin(\theta)q], q] + [n, p, [\cos(\theta)q - \sin(\theta)p]]
= 1 + 2 \cos(\theta) [n, p, q] = 1 + 2 \cos(\theta) lll_Q.
\]

Show that if \(\theta \neq 0 \), \(Q \) has only one real eigenvalue!

Rewrite the characteristic equation

\[
\lambda^3 - l_Q \lambda^2 + ll_Q \lambda - lll_Q = 0
\]

in factorized form.

\[
(\lambda - 1) (\lambda^2 - 2\lambda \cos(\theta) + 1) = 0
\]

Since \(|\cos(\theta)| \leq 1 \), \(Q \) has only one eigenvalue \(\lambda = 1 \).

Problem: Show that \((A^{adj})^{adj} = \det(A) A\)

\[
(A^{adj})^{adj} = \left(\frac{1}{\det(A)} A^{-1}\right)^{adj} = \det(A) (A^{-1})^{-t} = \det(A) A
\]

Problem: The following expression

\[
v = c [n \otimes m] \cdot x = c [x \cdot m] \cdot n
\]

characterizes a simple shearing motion in the spatial description. Here \(c \) is a positive constant and \(n \) and \(m \) are orthogonal unit vectors. Determine the principal stretches, the principal axes of stretching, and the angular velocity!

The above equation describes a steady motion in which the particle paths and streamlines are straight lines in the direction \(n \) with material planes orthogonal to \(m \) sliping over one another without being distorted. The spatial velocity gradient can be expressed as follows.

\[
l = \text{grad}(v) = \frac{\partial}{\partial x} c [n \otimes m] \cdot x = c n \otimes m
\]

Its symmetric part takes the following format

\[
d = l^{sym} = \frac{1}{2} [l + l^t] = \frac{1}{2} c [n \otimes m + m \otimes n].
\]

Reformulation with

\[
d = \frac{1}{4} c [n \otimes n + n \otimes m + m \otimes n + m \otimes m]
- \frac{1}{4} c [n \otimes n - n \otimes m - m \otimes n + m \otimes m].
\]

yields spectral representation

\[
d = \frac{1}{2} c \frac{1}{\sqrt{2}} [n + m] \otimes \frac{1}{\sqrt{2}} [n + m] - \frac{1}{2} c \frac{1}{\sqrt{2}} [n - m] \otimes \frac{1}{\sqrt{2}} [n - m]
\]

\[
d = \frac{1}{2} c \frac{1}{\sqrt{2}} [n + m] \otimes \frac{1}{\sqrt{2}} [n + m] - \frac{1}{2} c \frac{1}{\sqrt{2}} [n - m] \otimes \frac{1}{\sqrt{2}} [n - m]
\]
principal stretches: \{-\frac{1}{2}c; 0; +\frac{1}{2}c\}
principal axes of stretching: \{\frac{1}{\sqrt{2}}[n + m]; r; +\frac{1}{\sqrt{2}}[n - m]\}
where \(r\) is orthogonal to \(n\) and \(m\)

How does the volume change upon this motion?
Elaborate first invariant \(\text{tr}(d) = I_d\)!

\[I_d = -\frac{1}{2}c + 0 + \frac{1}{2}c = 0 \]

The motion is isochoric, i.e., volume preserving!
Typical example: crystallographic sliding / plasticity

For the angular velocity, consider the spin tensor \(w\), i.e., the skew symmetric part of spatial velocity gradient.

\[w = \Gamma^{skw} = \frac{1}{2}[I - I'] = \frac{1}{2}c[n \otimes m - m \otimes n] \]

Let \(x\) be an arbitrary vector.

\[w \cdot x = \frac{1}{2}c[n \otimes m - m \otimes n] \cdot x \]
\[= \frac{1}{2}c[(m \cdot x)n - (n \cdot x)m] \]
\[= -\frac{1}{2}cr \times [(x \cdot m)m + (x \cdot n)n + (x \cdot r)r] \]
\[= -\frac{1}{2}cr \times x = \omega \times x \]

Accordingly, \(\omega = -\frac{1}{2}cr\) is the axial vector of the spin tensor \(w\), and \(||\omega|| = -\frac{1}{2}c\) is the angular velocity.