
114 – density growth

14 – finite element method –
density growth - theory

where are we???

homework #03 homework #03



homework #03 homework #03

growing bone as open system

balance equations for open systems - mass

biological equilbrium

mass flux
• cell movement (migration)

mass source

• cell enlargement (hypertrophy)
• cell division (hyperplasia)
• cell growth (proliferation)

cowin & hegedus [1976], beaupré, orr & carter [1990], harrigan & hamilton [1992],
jacobs,levenston,beaupré,simo & carter [1995], huiskes [2000], carter & beaupré [2001]

growing bone as open system

balance equations for open systems - momentum

mechanical equilbrium

• volume specific version

• mass specific version

• subraction of weighted balance of mass



growing bone as open system

constitutive equations for open systems

coupling of growth and deformation

• free energy

• mass source

• stress

gibson & ashby [1999]

• mass flux

growing bone as open system

finite elements for open systems

• dense system of compressive trabaculae carrying stress into calcar region
• secondary arcuate system, medial joint surface to lateral metaphyseal region
• ward‘s triangle, low density region contrasting dense cortical shaft

carter & beaupré [2001]

11finite elements - integration point based

sequential solution - element based
huiskes, weinans, grootenboer, dalstra, fudala & slooff [1987],
carter, orr, fhyrie [1989], beaupré, orr & carter [1990], weinans,
huiskes & grootenboer [1992], [1994], jacobs, levenston, beaupré,
simo & carter [1995], huiskes [2000], carter & beaupré [2001]

staggered solution - integration point based

simultaneous solution - node point based

weinans, huiskes & grootenboer [1992], harrigan & hamilton [1992],,
[1994], jacobs, levenston, beaupré,simo & carter [1995]

jacobs, levenston, beaupré,simo & carter [1995], fischer, jacobs,
levenston & carter [1997], nackenhorst [1997], levenston [1997]]

12finite elements - integration point based

• temporal discretization

  

• linearization

• spatial discretization

• staggered/simultaneous

implicit euler backward  
finite element method

newton raphson iteration

gateaux derivative  

… to linearized discrete initial boundary value problem

from continuous problem…

recipe for finite element modeling



13finite elements – integration point based

• strong / differential form  

• weak / integral form - nonsymmetric

• strong form / residual format

• integration by parts

• integral theorem & neumann bc‘s

• weak form / integral form - symmetric

key transformation - from strong form to weak form (1d)

14

from equilibrium equation…

… to residual format

• cast it into its residual format

• with residual

• start with nonlinear mechanical equilibrium equation
quasi-static no gravity

finite elements – integration point based

15finite elements – integration point based

… and boundary conditions

• dirichlet / essential boundary conditions (displacements)

• neumann / natural boundary conditions (tractions)

• strong / differential form

residual equation…

16finite elements – integration point based

from strong form…

… to nonsymmetric weak form

• mulitplication with test function & integration

• weak form / nonsymmetric

• strong / differential form

second
derivative

no
derivative



17finite elements – integration point based

from non-symmetric weak form…

… to symmetric weak form

• gauss theorem & boundary conditions

• integration by parts

• weak form / symmetric first
derivative

first
derivative

18finite elements - integration point based

spatial discretization

… to discrete weak form

• interpolation of test functions

• interpolation of trial functions

• discretization

19finite elements - integration point based

from discrete weak form…

… to discrete residual

• discrete residual format

• discrete residual

• discrete weak form

finite elements - integration point based

integration point based solution of balance of mass

staggered solution of density and displacements

loop over all time steps
global newton iteration

loop over all elements
loop over all quadrature points

local newton iteration
determine element residual & tangent

determine global residual and tangent
determine

determine state of biological equilibrium

nlin_fem

cnst_law

nlin_fem

element1

upd_dens
cnst_law

nlin_fem
nlin_fem

element1
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nlin_fem.m
%%% loop over all load steps %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
for is = (nsteps+1):(nsteps+inpstep);
   iter = 0;  residuum = 1;
%%% global newton-raphson iteration %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
   while residuum > tol
      iter=iter+1;
      R = zeros(ndof,1); K = sparse(ndof,ndof);
      e_spa = extr_dof(edof,dof);
%%%%% loop over all elements %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
      for ie = 1:nel
         [Ke,Re,Ie] = element1(e_mat(ie,:),e_spa(ie,:),i_var(ie,:),mat);
         [K, R, I ] = assm_sys(edof(ie,:),K,Ke,R,Re,I,Ie);
      end
%%%%% loop over all elements %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
      u_inc(:,2)=dt*u_pre(:,2);  R = R - time*F_pre;   dofold = dof;
      [dof,F] = solve_nr(K,R,dof,iter,u_inc);
      residuum= res_norm((dof-dofold),u_inc);
    end
%%% global newton-raphson iteration %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
    time = time + dt;   i_var = I;   plot_int(e_spa,i_var,nel,is);
end
%%% loop over all load steps %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

22finite elements - integration point based

integration point based

• discrete residual

• residual of mechanical equilibrium/balance of momentum

check in matlab!

righthand side vector for global system of equations

23finite elements - integration point based

from discrete residual …

… to linearized residual

• incremental residual

• system of equations

• linearization / newton raphson scheme

• incremental iterative update

24finite elements - integration point based

linearized residual

iteration matrix for global system of equations

• stiffness matrix / iteration matrix

• linearization of residual wrt nodal dofs

4th order tensor - derivatives of 2nd order tensors wrt 2nd order tensor



25finite elements - integration point based

• stiffness matrix / iteration matrix

• linearization of residual wrt nodal dofs

check in matlab!

linearized residual

iteration matrix for global system of equations

26finite elements - integration point based

quads_2d.m
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [Ke,Re,Ie]=element1(e_mat,e_spa,i_var,mat)
%%% element stiffness matrix Ke, residual Re, internal variables Ie %%%%
Ie = i_var;
Re = zeros(8,1);
Ke = zeros(8,8);
nod=4;           delta = eye(2);
indx=[1;3;5;7];  ex_mat=e_mat(indx);
indy=[2;4;6;8];  ey_mat=e_mat(indy);
%%% integration points %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
g1=0.577350269189626; w1=1;
gp(:,1)=[-g1; g1;-g1; g1];   w(:,1)=[ w1; w1; w1; w1];
gp(:,2)=[-g1;-g1; g1; g1];   w(:,2)=[ w1; w1; w1; w1];
wp=w(:,1).*w(:,2);      xsi=gp(:,1);      eta=gp(:,2);
%%% shape functions and derivatives in isoparametric space %%%%%%%%%%%%%
N(:,1)=(1-xsi).*(1-eta)/4;   N(:,2)=(1+xsi).*(1-eta)/4;
N(:,3)=(1+xsi).*(1+eta)/4;   N(:,4)=(1-xsi).*(1+eta)/4;
dNr(1:2:8  ,1)=-(1-eta)/4;   dNr(1:2:8  ,2)= (1-eta)/4;
dNr(1:2:8  ,3)= (1+eta)/4;   dNr(1:2:8  ,4)=-(1+eta)/4;
dNr(2:2:8+1,1)=-(1-xsi)/4;   dNr(2:2:8+1,2)=-(1+xsi)/4;
dNr(2:2:8+1,3)= (1+xsi)/4;   dNr(2:2:8+1,4)= (1-xsi)/4;
JT=dNr*[ex_mat;ey_mat]';
%%% element stiffness matrix Ke, residual Re, internal variables Ie %%%%

27finite elements - integration point based

quads_2d.m
%%% loop over all integration points %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
for ip=1:4
indx=[2*ip-1; 2*ip];  detJ=det(JT(indx,:));
if detJ<10*eps;  disp('Jacobi determinant less than zero!');  end;
JTinv=inv(JT(indx,:));  dNx=JTinv*dNr(indx,:);
F=zeros(2,2);
for j=1:4
   jndx=[2*j-1; 2*j];
   F=F+e_spa(jndx)'*dNx(:,j)';
end
var = i_var(ip);
[A,P,var]=cnst_law(F,var,mat);
Ie(ip) = var;
for i=1:nod
   en=(i-1)*2;
   Re(en+ 1) =  Re(en+ 1) +(P(1,1)*dNx(1,i)' ...
                          + P(1,2)*dNx(2,i)') * detJ * wp(ip);
   Re(en+ 2) =  Re(en+ 2) +(P(2,1)*dNx(1,i)' ...
                          + P(2,2)*dNx(2,i)') * detJ * wp(ip);
end
%%% loop over all integration points %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% element stiffness matrix Ke, residual Re, internal variables Ie %%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

28finite elements - integration point based 

assm_sys.m

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [K,R,I]=assm_sys(edof,K,Ke,R,Re,I,Ie)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% assemble local element contributions to global tangent & residual %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% input:  edof  = [ elem X1 Y1 X2 Y2 ]    ... incidence matrix
%%%         Ke    = [ nedof x nedof ]       ... element tangent Ke
%%%         Re    = [ fx_1 fy_1 fx_2 fy_2 ] ... element residual Re
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% output: K     = [ ndof x ndof ]         ... global tangent K
%%%         R     = [ ndof x 1 ]            ... global residual R
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
[nie,n]=size(edof);
I(edof(:,1),:)=Ie(:);
t=edof(:,2:n);
for i = 1:nie
   K(t(i,:),t(i,:)) = K(t(i,:),t(i,:))+Ke;
   R(t(i,:))         =R(t(i,:))       +Re;
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

=

K u f



29finite elements - integration point based

@ integration point level

from

• constitutive equations - given               calculate

stress for righthand side vector

• update density for current stress state

and calculate

• calculate first piola kirchhoff stress of solid material

• calculate first piola kirchhoff stress of porous material

30finite elements - integration point based

@ integration point level

• stress calculation @ integration point level

• constitutive equations - given     calculate

check in matlab!

stress for righthand side vector

31finite elements - integration point based

@ integration point level

tangent for iteration matrix

depending on time discretization

with

• constitutive equations - given     calculate

32finite elements - integration point based

• tangent operator / constitutive moduli

• linearization of stress wrt deformation gradient

check in matlab!

@ integration point level

tangent for iteration matrix



finite elements - integration point based

cnst_den.m
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [A,P,var]=cnst_den(F,var,mat)
%%% determine tangent, stress and internal variable %%%%%%%%%%%%%%%%%%%
emod = mat(1);   nue  = mat(2);   rho0 = mat(3);   psi0 = mat(4);
expm = mat(5);   expn = mat(6);   dt   = mat(7);
xmu  = emod/2.0/(1.0+nue);  xlm = emod * nue /(1.0+nue)/(1.0-2.0*nue);
F_inv = inv(F);     J = det(F);   delta = [1 0; 0 1];
%%% update internal variable %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
[var,facs,fact]=upd_dens(F,var,mat);
%%% first piola kirchhoff stress %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
P =  facs * (xmu * F + (xlm * log(J) - xmu) * F_inv');
%%% tangent %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
for i=1:2
for j=1:2
for k=1:2
for l=1:2
    A(i,j,k,l) =  xlm                 * F_inv(j,i)*F_inv(l,k) ...
               - (xlm * log(J) - xmu) * F_inv(l,i)*F_inv(j,k) ...
               +                 xmu  * delta(i,k)*delta(j,l);
    A(i,j,k,l) = facs * A(i,j,k,l)   +  fact  * P(i,j)*P(k,l);
end, end, end, end
%%% determine tangent, stress and internal variable %%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

34finite elements - integration point based

conditionally stable - limited time step size

• direct update of growth multiplier

finite difference approximation

euler forward

explicit euler forward

recipe for temporal discretization

• evolution of density

35finite elements - integration point based

• evolution of density

• discrete residual

• local newton iteration

unconditionally stable - larger time steps

iterative update

implicit euler backward

recipe for temporal discretization

finite difference approximation

euler backward

36finite elements - integration point based

@ integration point level

check in matlab!

• residual of biological equilibrium / balance of mass

• discrete residual of density update

local newton iteration



finite elements - integration point based

upd_dens.m
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [var,facs,fact]=upd_dens(F,var,mat)
%%% update internal variable density %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
tol = 1e-8;      var =  0.0;
xmu = emod / 2.0 / (1.0+nue);     xlm = emod * nue /(1.0+nue)/(1.0-2.0*nue);
J  = det(F);C  = F'*F;            I1  = trace(C);
psi0_neo = xlm/2 * log(J)^2  +  xmu/2 *(I1 - 2 - 2*log(J));
rho_k0 = (1+var)*rho0;     rho_k1 = (1+var)*rho0;     iter = 0;    res  = 1;
%%% local newton-raphson iteration %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
while abs(res) > tol
   iter=iter+1;
   res =((rho_k1/rho0)^(expn-expm)*psi0_neo-psi0)*dt-rho_k1+rho_k0;
   dres= (expn-expm)*(rho_k1/rho0)^(expn-expm)*psi0_neo*dt/rho_k1-1;
   drho=- res/dres;    rho_k1 = rho_k1+drho;
end
%%% local newton-raphson iteration %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
rho  = rho_k1;   var = rho / rho0 - 1;
facs = (rho/rho0)^expn;
facr = 1/dt - (expn-expm) * (rho/rho0)^(expn-expm) / rho *psi0_neo;
fact =         expn / rho * (rho/rho0)^(    -expm) / facr;
%%% update internal variable density %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

finite elements - integration point based

integration point based solution of balance of mass

staggered solution of density and displacements

loop over all time steps
global newton iteration

loop over all elements
loop over all quadrature points

local newton iteration
determine element residual & tangent

determine global residual and tangent
determine

determine state of biological equilibrium

nlin_fem

cnst_law

nlin_fem

element1

upd_dens
cnst_law

nlin_fem
nlin_fem

element1

example - topology optimization

form follows function - bioinspired design

find the lightest structure to support a given set of loads

load case I load case II
optimal

material distribution I

example - topology optimization

ex_frame.m
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% function [q0,edof,bc,F_ext,mat,nel,node,ndof,nip] = ex_frame
%%% input data for frame example %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
emod = 1000;  nue  = 0.3;  rho0 = 1.0;  psi0 = 1.0;
expm = 3.0;   expn = 2.0;  dt   = 1.0;
mat = [emod,nue,rho0,psi0,expm,expn,dt];

xbox(1) = 0.0;  xbox(2) = 2.0;   nx = 8;
ybox(1) = 0.0;  ybox(2) = 1.0;   ny = 4;
[q0,edof] = mesh_sqr(xbox,ybox,nx,ny);
[nel, sizen] = size(edof);[ndof,sizen] = size(q0);
node        = ndof/2;     nip = 4;

%%% dirichlet boundary conditions
bc(1,1) = 2*(ny+1)*(0     ) +2;    bc(1,2) = 0;
bc(2,1) = 2*(ny+1)*(nx    ) +2;    bc(2,2) = 0;
bc(3,1) = 2*(ny+1)*(nx/2+0) +1;    bc(3,2) = 0;
bc(4,1) = 2*(ny+1)*(nx/2+1)   ;    bc(4,2) = -ybox(2)/50;

%%% neumann boundary conditions
F_ext =  zeros(ndof,1);
%%% input data for frame example
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%



example - topology optimization

ex_frame.m

find the lightest structure to support a given set of loads

form follows function - bioinspired design

example - topology optimization

form follows function

bicycle frames 1817-2005

example - topology optimization

form follows function

design of bicycle frame

Armstrong [2005]

example - growing bone

functional adaptation of proxima femur

the density develops such that the tissue can
just support the given mechanical load
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 the femoral neck  normally forms
                an angle of 120-135 degrees with
                the shaft of the bone. this acts
as the lever in easing the action of the muscles
around the hip joint.  an increase or decrease
in this angle beyond the normal limits causes
improper action of muscles, and interferes with
walking. an increase in the angle beyond 135
degrees is called coxa valga or outward
curvature of the hip joint. a decrease in
the angle below 120 degrees is called coxa
vara or inward curvature of the hip joint.

femoral neck deformity

example - femoral neck deformity example - femoral neck deformity

simulation vs. x-ray scans

excellent agreement of simulation and x-ray pattern
pauwels [1973], balle [2004], kuhl & balle [2005]

coxa norma coxa valgacoxa vara

example - henry‘s knee

class project me337 
mechanics of growth

pang, shiwalkar, madormo, taylor, andriacchi, kuhl [2012]

example - henry‘s knee

how does henry‘s bone grow?

pang, shiwalkar, madormo, taylor, andriacchi, kuhl [2012]



example - henry‘s knee

how does henry‘s bone grow?

pang, shiwalkar, madormo, taylor, andriacchi, kuhl [2012]

example - henry‘s knee

how predictive is the simulation?

pang, shiwalkar, madormo, taylor, andriacchi, kuhl [2012]

example - henry‘s knee

how predictive is the simulation?

pang, shiwalkar, madormo, taylor, andriacchi, kuhl [2012]

example - henry‘s knee

regrow henry‘s bone in matlab!

pang, shiwalkar, madormo, taylor, andriacchi, kuhl [2012]

ex_henry.m


