# 10 - finite element method volume growth - implementation

STAGE 3: DEPRESS

VHY .? WHY ME?

AGE 4 ACCEPTANC

THE FOUR STAGES OF DATA LOSS DEALING WITH ACCIDENTAL DELETION OF MONTHS OF

TAGE 2: ANGER

# 10 - finite element method



## multiplicative decomposition

lee [1969], simo [1992], rodriguez, hoger & mc culloch [1994], epstein & maugin [2000] humphrey [2002], ambrosi & mollica [2002], himpel, kuhl, menzel & steinmann [2005]

# example - growth of aortic wall

3

| day | date |    | topic                                                |
|-----|------|----|------------------------------------------------------|
| tue | jan  | 10 | motivation - everything grows!                       |
| thu | jan  | 12 | basics maths - notation and tensors                  |
| tue | jan  | 17 | basic kinematics - large deformation and growth      |
| thu | jan  | 19 | kinematics - growing hearts                          |
| tue | jan  | 24 | guest lecture - growing skin                         |
| thu | jan  | 26 | guest lecture - growing leaflets                     |
| tue | jan  | 31 | basic balance equations - closed and open systems    |
| thu | feb  | 02 | basic constitutive equations - growing tumors        |
| tue | feb  | 07 | volume growth - finite elements for growth           |
| thu | feb  | 09 | volume growth - growing arteries                     |
| tue | feb  | 14 | volume growth - growing skin                         |
| thu | feb  | 16 | volume growth - growing hearts                       |
| tue | feb  | 21 | basic constitutive equations - growing bones         |
| thu | feb  | 23 | density growth - finite elements for growth          |
| tue | feb  | 28 | density growth - growing bones                       |
| thu | mar  | 01 | everything grows! - midterm summary                  |
| tue | mar  | 06 | midterm                                              |
| thu | mar  | 08 | remodeling - remodeling arteries and tendons         |
| tue | mar  | 13 | class project - discussion, presentation, evaluation |
| thu | mar  | 15 | class project - discussion, presentation, evaluation |
| thu | mar  | 15 | written part of final projects due                   |

# where are we?

the potato equations - kinematics  $F = F_{e} \cdot F_{g}$  $\mathcal{B}_0$  $\mathcal{B}_t$ mass source  $R^{*} \rho_{0}^{*}$  $\mathcal{R}_0 | 
ho_0$ mass flux growth tensor  $F_{e}$ 

#### multiplicative decomposition

lee [1969], simo [1992], rodriguez, hoger & mc culloch [1994], epstein & maugin [2000], humphrey [2002], ambrosi & mollica [2002], himpel, kuhl, menzel & steinmann [2005]

# example - growth of aortic wall

#### volume growth at constant density volume growth of the aortic wall hypersensitive normosensitive severeley hypersensitive • free enerav $\psi_0 = \psi_0^{ m neo}(\boldsymbol{F}_{ m e})$ $oldsymbol{P}_{\mathrm{e}} = oldsymbol{P}_{\mathrm{e}}^{\mathrm{neo}}(oldsymbol{F}_{\mathrm{e}})$ • stress • growth tensor $\mathbf{F}_{g} = \vartheta \mathbf{I}$ $D_{t}\vartheta = k_{\vartheta}(\vartheta) \operatorname{tr}(\mathbf{C}_{e} \cdot \mathbf{S}_{e})$ arowth function pressure • mass source $\mathcal{R}_0 = 3 \rho_0^* \vartheta^2 D_t \vartheta$ increase in mass kinematic coupling of growth and deformation wall thickening - thickening of musculoelastic fascicles rodriguez, hoger & mc culloch [1994], epstein & maugin [2000], humphrey [2002] matsumoto & hayashi [1996], humphrey [2002] example - growth of aortic wall example - growth of aortic wall

# compensatory wall thickening during atherosclerosis



Figure 5. Diagrammic representation of a possible sequence of changes in atherosclerotic arteries leading eventually to lumen narrowing and consistent with the findings of this study. The artery enlarges initially (left to right in diagram) in association with the plaque accumulation to maintain an adequate, if not normal, lumen area. Early stages of lesion development may be associated with overcompensation. at more than 40% stenosis, however, the plaque area continues to increase to involve the entire circumference of the vessel, and the artery no longer enlarges at a rate sufficient to prevent the narrowing of the lumen.

glagov, weisenberg, zarins, stankunavicius, kolettis [1987]

# example - growth of aortic wall



himpel, kuhl, menzel & steinmann [2005]

# example - growth of aortic wall



# integration point based solution of growth equation

| 00   | loop over all time steps                              |  |  |  |
|------|-------------------------------------------------------|--|--|--|
|      | global newton iteration                               |  |  |  |
| 0000 | loop over all elements                                |  |  |  |
|      | loop over all quadrature points                       |  |  |  |
|      | local newton iteration to determine $\vartheta_{n+1}$ |  |  |  |
| 0    | determine element residual & partial derivative       |  |  |  |
|      | determine global residual and iterational matrix      |  |  |  |
| 00   | determine $\varphi_{n+1}$                             |  |  |  |
| 00   | determine state of biological equilibrium             |  |  |  |

## growth multiplier $\vartheta$ as internal variable

finite element method

#### 10



## growth multiplier $\vartheta$ as internal variable

# finite element method

11

#### nlin\_fem.m

for is = (nsteps+1):(nsteps+inpstep); iter = 0; residuum = 1; while residuum > tol iter=iter+1; R = zeros(ndof,1); K = sparse(ndof,ndof); e\_spa = extr\_dof(edof,dof); for ie = 1:nel [Ke,Re,Ie] = element1(e\_mat(ie,:),e\_spa(ie,:),i\_var(ie,:),mat); [K, R, I ] = assm\_sys(edof(ie,:),K,Ke,R,Re,I,Ie); end u\_inc(:,2)=dt\*u\_pre(:,2); R = R - time\*F\_pre; [dof,F] = solve\_nr(K,R,dof,iter,u\_inc); dofold = dof;residuum= res\_norm((dof-dofold),u\_inc); end time = time + dt; i\_var = I; plot\_int(e\_spa,i\_var,nel,is); end 









19

• linearization of stress wrt deformation gradient

## tangents for iteration matrix

finite element method

finite element method

xmu

- (xlm \* log(Je) - xmu) \* Fe\_inv(l,i)\*Fe\_inv(j,k) ...

\* delta(i,k)\* delta(j,l) ...

ten1(i,j)\* ten2(k,1);

for i=1:ndim; for j=1:ndim; for k=1:ndim; for l=1:ndim

 $A(i,j,k,l) = xlm * Fe_inv(j,i)*Fe_inv(l,k) \dots$ 

end, end, end, end; A = A / theta;

#### @ integration point level



21

23

discrete update of growth multiplier

check in matlab!

 $\mathsf{R}_{n+1}^{\vartheta} = \vartheta_{n+1} - \vartheta_n - k \operatorname{tr}(\boldsymbol{M}^{\mathrm{e}}) \Delta t$ 

residual of biological equilibrium

local newton iteration

# finite element method

#### updt vol.m

```
while abs(res) > tol
 iter=iter+1;
 Fe = F/the_k1; Fe_inv = inv(Fe); Ce = Fe'*Fe; Ce_inv = inv(Ce);
 Je = det(Fe); delta = eye(ndim);
 Se = xmu * delta + (xlm * log(Je) - xmu) * Ce_inv;
            tr_Me = trace(Me);
 Me = Ce*Se;
 CeLeCe = ndim * ndim * xlm - 2 * ndim * (xlm * log(Je) - xmu);
 dtrM_dthe = - 1/the_k1 * ( 2*tr_Me + CeLeCe );
 if tr_Me > 0
        = kt*((tt-the_k1)/(tt-1))^mt;
   k
   dk_dthe = k / (the_k1-tt)
                          *mt;
 else
         = kc*((the_k1-tc)/(1-tc))^mc;
   dk_dthe = k /(the_k1-tc)
                          *mc;
 end
res = k * tr_Me * dt - the_k1 + the_k0;
dres =(dk_dthe * tr_Me + k * dtrM_dthe)*dt -1;
the_k1 = the_k1 -res/dres;
if(iter>20); disp(['*** NO LOCAL CONVERGENCE ***']); return; end;
```

## finite element method

22

#### ex tube1.m \*\*\*\*\*\* function [q0,edof,emat,bc,F\_ext,mat,ndim,nel,node,ndof,nip,nlod] = ex\_tube1 emod = 3.0; nue = 0.3;kt = 0.5; kc = 0.25; mt = 4.0; mc = 5.0; tt = 1.5; tc = 0.5; dt=1.0; mat=[emod,nue,kt,kc,mt,mc,tt,tc,dt]; 2.0; % length 1 = 1.0; % inner radius ra = ri = 0.5; % outer radius % number of elements in longitudinal direction nez = 8 4 % number of elements in radial direction ner = % number of elements in circumferential direction 16; nep = tol = 1e-8;ndim = 3;nip = 8;nel = nez \* ner \* nep; node= (nez+1)\*(ner+1)\*nep; ndof = ndim\*node; \*\*\*\*\*\* finite element method

#### ex tube1.m

q0 = zeros(ndim\*node,1); nn = 0;

delta\_z = l / nez; delta\_r = (ra-ri) / ner; delta\_t = 2\*pi / nep; for iz = 0:nez  $z = iz * delta_z;$ for ir = 0:ner  $r = ri + ir * delta_r;$ for ip = 0:(nep-1) $p = ip * delta_t;$ nn = nn + ndim;q0(nn-2,1) = r\*cos(p);q0(nn-1,1) = r\*sin(p);q0(nn , 1) = z;end end end



# finite element method

## ex tubel.m



# finite element method



#### ex tube1.m

Copyright © 2005 Tech Science Press

25

Comp Meth Eng Sci. 2005;8:119-134

26

#### Computational modelling of isotropic multiplicative growth G. Himpel, E. Kuhl, A. Menzel, P. Steinmann





Figure 12 : Deformation of the tube and evolution of the stretch ratio for an axial compression u = -1.0.

himpel, kuhl, menzel & steinmann [2005]

finite element method





## atherosclerosis

atherosclerosis is a condition in which an artery wall thickens as the result of a buildup of fatty materials. the atheromatous plaques, although compensated for by artery enlargement, eventually lead to plaque rupture and clots inside the arterial lumen. the clots leave behind stenosis, a narrowing of the artery, and insufficient blood supply to the tissues and organ it feeds. if the artery enlargement is excessive, a net aneurysm results. these complications of advanced atherosclerosis are chronic, slowly progressive and cumulative.

example - atherosclerosis

30



example - atherosclerosis

## atherosclerosis





[greek] arteria = artery / sclerosis = hardening

# example - atherosclerosis



#### in-stent restenosis



# example - stenting and restenosis





stress-induced volume growth

kuhl, maas, himpel & menzel [2007]

# example - stenting and restenosis 36



39



example - stenting and restenosis



tissue growth - response to virtual stent implantation kuhl, maas, himpel & menzel [2007]

example - stenting and restenosis



example - stenting and restenosis