10 - finite element method volume growth - implementation

THE FOUR STAGES OF DATA LOSS palme hinh accianta deletion of montus of

10 - finite element method

multiplicative decomposition
lee [1969], simo [1992], rodriguez, hoger \& mc culloch [1994], epstein \& maugin [2000]. humphrey [2002], ambrosi \& mollica [2002], himpel, kuhl, menzel \& steinmann [2005]

volume growth at constant density

- free energy $\psi_{0}=\psi_{0}^{\text {neo }}\left(\boldsymbol{F}_{\mathrm{e}}\right)$
- stress
$\boldsymbol{P}_{\mathrm{e}}=\boldsymbol{P}_{\mathrm{e}}^{\mathrm{neo}}\left(\boldsymbol{F}_{\mathrm{e}}\right)$
- growth tensor $\boldsymbol{F}_{\mathrm{g}}=\vartheta \boldsymbol{I} \quad \mathrm{D}_{t} \vartheta=k_{\vartheta}(\vartheta) \operatorname{tr}\left(\boldsymbol{C}_{\mathrm{e}} \cdot \boldsymbol{S}_{\mathrm{e}}\right)$
- mass source $\mathcal{R}_{0}=3 \rho_{0}^{*} \vartheta^{2} \mathrm{D}_{t} \vartheta$
gromin unction pressure

kinematic coupling of growth and deformation rodriguez, hoger \& mc culloch [1994], epstein \& maugin [2000], humphrey [2002] example - growth of aortic wall
compensatory wall thickening during atherosclerosis

Figure 5. Diagrammic representation of a possible sequence of changes in atherosclerotic arteries leading eventually to lumen narrowing and consistent with the findings of this study. The artery enlarges initially (left to right in diagram) in association with the plaque accumulation to maintain an adequate, if not normal, lumen area. Early stages of lesion development may be associated with overcompensation. at more than 40% stenosis, however, the plaque area continues to increase to involve the entire circumference of the vessel, and the artery no longer enlarges at a rate suffcient to prevent the narrowing of the lumen.

example - growth of aortic wall

volume growth of the aortic wall

matsumato \& heyashi [1990], humohey [2002]
example - growth of aortic wall
-

stress-induced volume growth
volume growth in cylindrical tube

stress-induced volume growth
example - growth of aortic wall 9
integration point based solution of growth equation

growth multiplier ϑ as intemal variable
finite element method

nlin_fem.m

\%\%\% loop over all load steps \% for is = (nsteps +1): (nsteps+inpstep);
iter $=0 ;$ residuum $=1$
\%\%\% global newton-raphson iteration \% while residuum > tol
iter=iter +1 ;
$\mathrm{R}=$ zeros(ndof,1); $\mathrm{K}=$ sparse(ndof, ndof);
e_spa = extr_dof(edof, dof);
loop over all elements \% for $\mathrm{ie}=1$:nel
[Ke,Re,Ie] = element1(e_mat(ie,:), e_spa(ie,:),i_var(ie, :),mat); [K,
\%\%\%\% loop over all elements \% u_inc(:, 2)=dt*u_pre(:,2); R = R - time*F_pre; dofold = dof;
 residuum= res_norm((dof-dofold), u_inc);
global newton-raphson iteration \% time = time + dt; \quad i_var = I; plot_int(e_spa,i_var,nel,is);
end
\%\%\% loop over all load steps \%

- linearization of residual wit nodal dofs
iteration matrix for global system of equations
finite element method

quads_2d.m

\%\%\% loop over all integration points \% for $i p=1: 4$
indx $=\left[2\right.$ ip-1; $2^{* i p] ; ~ d e t J=d e t(J T(i n d x,:)), ~}$
if detJ<10*eps; disp('Jacobi determinant less than zero!'); end;
JTinv=inv(JT(indx, $)$) ; dNx=JTinv*dNr(indx JTinv=inv(JT(indx,:)); dNx=JTinv*dNr(indx,:);
$F=z e r o s(2,2)$;
for $\begin{aligned} j=1: 4 \\ j n d x=\end{aligned}$
$\mathrm{jndx}=\left[2^{*} \mathrm{j}-1 ; 2^{*} j\right] ;$
$F=F+e _s p a(j n d x)^{\prime *} d N x(:, j)^{\prime} ;$
end
var
[A, P, var]=cnst_law(F, var, mat);
Ie(ip) = var;
for $i=1$: nod
en=(i-1)*2;

$$
\begin{aligned}
\operatorname{Re}(e n+1)=\operatorname{Re}(e n+1) & +\left(P(1,1) * d N x(1, i)^{\prime} \ldots\right. \\
& +P(1,2)^{\left.* d N x(2, i)^{\prime}\right) * \operatorname{detJ} * w p(i p) ;} \\
\operatorname{Re}(e n+2)=\operatorname{Re}(e n+2) & +\left(P(2,1)^{* d N x(1, i)^{\prime}} \cdots\right. \\
& +P(2,2)^{\left.* d N x(2, i)^{\prime}\right) * \operatorname{detJ} * w p(i p) ;}
\end{aligned}
$$

end
\%\%\% loop over all integration points \%
\%\%\% element stiffness matrix Ke, residual Re, internal variables Ie \%\%\%
$\% \%$
assm_sys.m
© the integration point level
\% function $[\mathrm{K}, \mathrm{R}, \mathrm{I}]=a s s m$ sys (edof, $\mathrm{K}, \mathrm{Ke}, \mathrm{R}, \mathrm{Re}, \mathrm{I}, \mathrm{Ie}$)
\%
\%\% assemble local element contributions to global tangent \& residual \% \%
\%\% input: edof = [elem X1 Y1 X2 Y2] ... incidence matrix
$\begin{array}{lll}\% \% \% & \mathrm{Ke} & =[\text { nedof } \mathrm{x} \text { nedof }] \\ \% \% \% & \operatorname{Re} & =[\text { fx_1 fy_1 fx_2 fy_2 }] \ldots \text { element tangent } \mathrm{Ke} \\ \ldots\end{array}$
\%
$\% \%$ output: $\mathrm{K}=[$ ndof x ndof $] \quad \cdots$ global tangent K

\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%
[nie, n]=size(edof);
[nie, $n]=s i z e(e d o f) ;$
I (edof(:,1), : $)=\operatorname{Ie}(:)$;
t=edof(: $:, 1$), $:$: $)$;
for $i=1$:nie
$K(t(i,:), t(i,:))=K(t(i,:), t(i,:))+K e ;$
$\operatorname{lem}_{K} U_{R}=L_{R}$
$R(t(i,:))$
\%

finite element method

@ the integration point level

- tangent operator / constitutive moduli
check in matlab!
$\mathbf{A}=\frac{\mathrm{d} \boldsymbol{P}}{\mathrm{d} \boldsymbol{F}}=\left.\frac{\partial \boldsymbol{P}}{\partial \boldsymbol{F}}\right|_{F^{\mathrm{g}}}+\frac{\partial \boldsymbol{P}}{\partial \boldsymbol{F}^{\mathrm{g}}}:\left.\frac{\partial \boldsymbol{F}^{\mathrm{g}}}{\partial \vartheta} \otimes \frac{\partial \vartheta}{\partial \boldsymbol{F}}\right|_{F}$
- linearization of stress wrt deformation gradient
tangents for iteration matrix
finite element method
19
- constitutive equations - given \boldsymbol{F} calculate \boldsymbol{P}
check in matlab!

$$
\boldsymbol{P}\left(\boldsymbol{F}^{\mathrm{e}}\right)=\mu \boldsymbol{F}^{\mathrm{e}}+\left[\lambda \ln \left(\operatorname{det}\left(\boldsymbol{F}^{\mathrm{e}}\right)\right)-\mu\right] \boldsymbol{F}^{\mathrm{e}-\mathrm{t}}
$$

- stress calculation @ integration point level
stress for righthand side vector
finite element method

cnst_vol.m

\% function $[A, P, v a r]=c n s t-v o l(F$, var, mat, ndim)
\% determine tangent, stress and internal variable
\% emod = mat (1); nue $=\operatorname{mat}(2) ; \mathrm{kt}=\operatorname{mat}(3) ; \mathrm{kc}=\operatorname{mat}(4)$;
$\mathrm{mt}=\operatorname{mat}(5) ; \quad \mathrm{mc}=\operatorname{mat}(6) ; \quad \mathrm{tt}=\operatorname{mat}(7) ; \quad \mathrm{tc}=\operatorname{mat}(8) ; \quad \mathrm{dt}=\operatorname{mat}(9)$; $\times \mathrm{mmu}=$ emod $/ 2 /$ ($1+$ nue) ; $; \quad \times \mathrm{lm}=$ emod $*$ nue $/(1+$ nue $) /(1-2 *$ nue $) ;$ \%\%\% update internal variable\%\%\%\%\%\%\%\%\%\%\%\% [var, ten1, ten2]=updt_vol(F, var, mat, ndim);
theta $=\mathrm{var}(1)+1$; $\mathrm{Fe}=\mathrm{F} / \mathrm{theta} ; \mathrm{Fe}$ _inv=inv(Fe); $\mathrm{Je}=\mathrm{det}(\mathrm{Fe})$; delta=eye(ndim);
\%\%\% first piola kirchhoff stress $\% \%$

\%\%\% tangent \%
for $\mathrm{i}=1$:ndim; for $\mathrm{j}=1$:ndim; for $\mathrm{k}=1$:ndim; for $\mathrm{l}=1$:ndim
$A(i, j, k, i)=x l m * F e _i n v(j, i) * F e _i n v(l, k)$
(xlm * log(Je) - xmu) * Fe_inv(l,i)*Fe_inv(j,k) ..
xmu * delta(i,k)* delta(j,l)
end, end, end, end;
$\mathrm{A}=\mathrm{A} /$ theta;
\%
@ integration point level

- discrete update of growth multiplier
check in matlab!

$$
\mathbf{R}_{\mathrm{n}+1}^{\vartheta}=\vartheta_{\mathrm{n}+1}-\vartheta_{\mathrm{n}}-k \operatorname{tr}\left(\boldsymbol{M}^{\mathrm{e}}\right) \Delta t
$$

- residual of biological equililbrium

local newton iteration

finite element method
updt_vol.m
\% \%\%\% local newton-raphson iteration $\% \%$
while abs(res) > tol
iter=iter+1;

$\mathrm{Je}=\operatorname{det}(\mathrm{Fe}) ;$ delta $=$ eye (ndim);
$\mathrm{Se}=\mathrm{xmu} * \operatorname{delta}+(x \operatorname{lm} * \log (\mathrm{Je})-x m u) *$ Ce_inv
$\mathrm{se}=\times \mathrm{mu}$ delta + (xlm $\log (\mathrm{Je})$
Me $=$ Ce Se, ${ }^{*}$ * ndim *
* (xlm * log(Je) - xmu);
dtrM_dthe $=-1$ the $k 1 *(2 *$ tr_Me + CeLeCe $)$
if tr_Me > 0
$\mathrm{k} \quad=k t^{*}\left(\left(\mathrm{tt}-\mathrm{the} _\mathrm{k} 1\right) /(\mathrm{tt}-1)\right)^{\wedge} \mathrm{mt}$;
$d k _d t h e=k \quad /\left(\right.$ the_k1-tt) $\quad *_{m t}$;
$\mathrm{k}=k c^{*}((\text { the_k1-tc) }) /(1-t c))^{\wedge m c}$;
dk _dthe $=\mathrm{k} \quad /($ the_k1-tc)
es $=k$ * tr_Me ${ }^{*} d t$ - the_k1 + the_k0
dres $=\left(d k _d t h e *\right.$ tr_Me + k * dtrM_dthe)*dt -1;
the_k1 = the_k1 -res/dres;
if(iter>20); disp([${ }^{* * *}$ NO LOCAL CONVERGENCE $\left.\left.{ }^{* * *}\right]\right)$; return; end,
\%\%\% local newton-raphson iteration \%
finite element method

ex_tube1.m

ex_tube1.m
\%\%\% connectivity \% for $\mathrm{ie}=1$: nel
edof(ie,: $)=[$ ie, ndim*enod(ie,1)-2 ndim*enod(ie,1)-1 ndim*enod(ie,1) ndim*enod(ie,2)-2 \quad ndim*enod(ie,2)-1 ndim*enod(ie,2) ndim*enod(ie,3)-2 ndim*enod(ie,3)-1 ndim*enod(ie,3) ndim*enod(ie,4)-2 ndim*enod(ie,4)-1 ndim*enod(ie,4) ndim*enod(ie,5)-2 ndim*enod(ie,5)-1 ndim*enod(ie,5) $\begin{array}{lll}\text { ndim*enod(ie,6)-2 } & \text { ndim*enod(ie,6)-1 } & \text { ndim*enod(ie,6) } \\ \text { ndim*enod(ie,7)-2 } & \text { ndim*enod(ie,7)-1 } & \text { ndim*enod(ie, }\end{array}$
end

$$
\begin{array}{lll}
\text { ndim*enod(ie,7)-2 } & \text { ndim*enod(ie,7)-1 } & \text { ndim*enod(ie,7) } \\
\text { ndim*enod(ie,8)-2 } & \text { ndim*enod(ie,8)-1 } & \text { ndim*enod(ie,8)]; }
\end{array}
$$

du $=l / 2 ; n b=0 ;$
for $i b=1:\left(\right.$ nep $\left.^{*}(n e r+1)\right)$
if(abs(q0(ndim*(node-nep*(ner+1))+ndim*ib-2)-0.0)<tol) $\mathrm{nb}=\mathrm{nb}+1 ; \quad \mathrm{bc}(\mathrm{nb},:)=\left[\right.$ ndim*ib-2 $\left.^{2}\right]$ end if(abs(q0(ndim*(node-nep*(ner+1))+ndim*ib-1)-0.0)<tol) end
\%\%\% loading \% load $=0.0 ;$ F_ext $^{2}=$ zeros $($ ndof, 1$) ;$ nlod $=1$;
\%

ex_tube1.m

Copyright © 2005 Tech Science Press
Comp Meth Eng Sci. 2005;8:119-134

Computational modelling of isotropic multiplicative growth

G. Himpel, E. Kuhl, A. Menzel, P. Steinmann

 Figure 10 : Deformation of the tube and evolution of the Figure 10: Deformation of the tube andstretch ratio for an axial stretch $u=1.0$.

Figure 12 : Deformation of the tube and evolution of the stretch ratio for an axial compression $u=-1.0$.
himpel, kuhl, menzel \& steinmann [2005]

example - atherosclerosis
${ }^{31}$

atherosclerosis

atherosclerosis is a condition in which an artery wall thickens as the result of a buildup of fatty materials. the atheromatous plaques, although compensated for by artery enlargement, eventually lead to plaque rupture and clots inside the arterial lumen. the clots leave behind stenosis, a narrowing of the artery, and insufficient blood supply to the tissues and organ it feeds. if the artery enlargement is excessive, a net aneurysm results. these complications of advanced atherosclerosis are chronic, slowly progressive and cumulative.

qualitative simulation of atherosclerosis

re-nerrowing of x-section in response to high stress
example - atherosclerosis
stress-induced volume growth
example - stenting and restenosis 35

in-stent restenosis

restenosis is the reoccurrence of stenosis, the narrowing of a blood vessel, leading to restricted blood flow. restenosis usually pertains to a blood vessel that has become narrowed, received treatment, and subsequently became renarrowed. in some cases, surgical procedures to widen blood vessels can cause further narrowing. during balloon angioplasty, the balloon 'smashes' the plaques against the arterial wall to widen the size of the lumen. however, this damages the wall which responds by using physiological mechanisms
to repair the damage and the wall thickens. WIKIPDiA

example - stenting and restenosis

stress-induced volume growth

tissue growth - response to virtual stent implantation
example - stenting and restenosis

