day | date topic
tue | jan |10 motivation - everything grows!
thu | jan |12 basics maths - notation and tensors
tue | jan |17 basic kinematics - large deformation and growth
O7 - basics balance eguations Tl TR
q tue | jan |24 guest lecture - growing skin
thu | jan |26 guest lecture - growing leaflets
closed and open systems T S ——
thu | feb |02 basic constitutive equations - growing tumors
DESK ENTROPY JORGE CHAM © 2005 tue | feb |07 volume growth - finite elements for growth
thu | feb |09 volume growth - growing arteries
Definition & = =
Desk entropy is a spatiody- e tue | feb |14 volume growth - growing skin
namic quantity that measures € . .
& VioaDRcw's dagres 6t ‘:‘J thu | feb |16 volume growth - growing hearts
disorder, and the inability to @ tue | feb |21 basic constitutive equations - growing bones
find anything when you really o
need it thu | feb |23 density growth - finite elements for growth
Any spontaneous activity, ' -
whether productive or unpro- tue | feb |28 density growth - growing bones
ductive, disperses crap matter thu | mar |01 everything grows! - midterm summary
and increases overall desk
entropy. tue | mar |06 midterm
Efforts to reverse desk entropy N N 5
are temporary, and inevitably year one year two year three PhD Year thu | mar |08 remodeling - remodeling arteries and tendons
decrease over time. d = tue | mar |13 class project - discussion, presentation, evaluation
www.phdcomics.com 3 e ; ;
thu | mar |15 class project - discussion, presentation, evaluation
thu | mar |15 written part of final projects due

07 - balance equations 1 where are we??7?
T —

final projects continuum mechanics of growtn

kinematic equations for finite growth

F=F., F
e tendon growth: harrison, brandon, mohammed, matthew . &
* tendon growth and remodeling: pcter balance equations for open systems

* muscle growth: clex Dipo = Div(R) + Ro
e skin growth and healing: beth, ann, armen “i’ po Dy = Div(P) + b,

* benign vocal fold nodule and polyp growth: corcy constitutive equations for Iving tissues

e cerebral aneurysm grov-vth: jina P = P(po, F, F,)
e growth of swelling gels: hardik, x, |l . .
* bone growth in martial arts: kevin, alison, saiwan, kami fe analyses for biological structures

continuum- & computational biomechanics

where are we??? 3 where are we??? 4




potato - kinematics

® nonlinear deformation map ¢
=p(X,t) with ¢:BoxR—B;
e spatial derivative of ¢ - deformation gradient

de=F.dX Wth F:TB,—TB, F:g_;

t fixed

kinematic equations

||

Kinematics of finite growth
_Bo /f\ B
B——0

[1] consider an elastic body Boat time t,,unloaded &stressfree

[2] imagine the body is cut into infinitesimal elements each of
which is alowed to undergo volumetric growth

kinematics of growth 7

M’nematics of finite grovvth

D=0

[1] consider an elastic body Boat time t,,unloaded &stressfree

kinematics of growth 6

M’nematics of finite grovvth

D=0
F, O\ %l

[1] consider an elastic body Boat time t,,unloaded &stressfree

[2] imagine the body is cut into infinitesimal elements each of
which is alowed to undergo volumetric growth

[3] after growing the elements, B, may be incompatitle

kinematics of growth 8




M’nematics of finite grovvth

00
R @ s

[1] consider an elastic body Boat time t,,unloaded &stressfree

[2] imagine the body is cut into infinitesimal elements each of
which is alowed to undergo volumetric growth

[3] after growing the elements, B, may be incompatitle
[4] loading generates compatible current configuration B

kinematics of growth 0

alance equations

balance equations [bal.ons rkwerzons] of mass,
momentum, angular momentum and energy, sup-
plemented with an entropy inequality
constitute the set of conservation laws.
the law of conservation of mass/matter
states that the mass of a closed system of
substances will remain constant, regardless
of the processes acting inside the system.
the principle of conservation of momentum
states that the total momentum of a
closed system of objects is constant.

WIK!PEDIA

The Free Encyefopodic

balance equations 0

potato - kinematics of fintte growth

* incompatible growth configuration B, & growth tensor F,
F=F, F,
rodriguez, hoger & mc culloch [1994]

kinematics of growth 10

CONTINUUM
MECHANICS B

alance equations

balance equations [bzl.ons r'kwerzons] of :
mass, linear momentum, angular momentum 7 b Chai
and energy apply to all material bodies.
each one gives rise to a field equation,
holing on the configurations of a body in a
sufficiently smooth motion and a jump
condition on surfaces of discontinuity.

like position, time and body, the concepts
of mass, force, heating and internal energy
which enter into the formulation of the
balance equations are regarded as having
primitive status in continuum mechanics.

chadwick "continuum mechanics' [1976]
——————————————————————————————————————————————————————————

balance equations 12




potato - balance equations

B Isolation

[1] isolation of subset gfrom B

balance equations 13

potato - balance equations

B Isolation
9B , )
BeB

[1] isolation of subset gfrom B

[2] characterization of influence of remainim% body through
phenomenclogical quantities - contact fluxes #, & &

[3] definition of basic physical quantities - mass, linear and
angular momentum, energy

balance equations 15

potato - balance equations

B isolation B

[1] isolation of subset gfrom B

[2] characterization of influence of remainim% body through
phenomenclogical quantities - contact fluxes #, & &

balance equations 4

potato - balance equations

B Isolation
9B , )
BeB

[1] isolation of subset gfrom B

[2] characterization of influence of remainim% body through
phenomenclogical quantities - contact fluxes #, & &

[3] definition of basic physical quantities - mass, linear and
angular momentum, energy
[4] postulation of balance of these guantities
————————————————————————————————————————————————————————————————————————————

balance equations 16



generic balance equation

general format

A ... balance quantity
B fix B-n=T1"
C... source

T .. production

D,A = Div(B) + C+T'

——————————————————————————————————————————————————————
balance equations - closed systems

balance of (inear) momentum

palance of momentum

pov ... Inear momentum density
P . momentum flux - stress

by ... momentum source - force
0 ... NO momentum production

P-n=T1T%

equiliorium equation  Dy(pev) = Div(P) + by

balance equations - closed systems

balance of mass

balance of mass

Po. .. density

0... no mass flux 7 =0
0... N0 Mass source

0... N0 Mass production

continuity equation Depo =0

balance equations - closed systems

compare [l T twsor

GRADUATION

First published in 1679, Isaac Newton's
"Procrastinare Unnaturalis Principia
Mathematica” is often considered one of
the most important single works in the his-
tory of science. Its Second Law is the most
powerful of the three, allowing mathema-
tical calculation of the duration of a
doctoral degree.

SECOND LAW
“The age, a, of a doctoral process
is directly proportional to the ffexiﬁi-
ity, . given by the advisor and
inversely proportional to the
student’s wotivation, m'

Mathematically, this postulate translates to:

A= ﬂcx:[ﬂ[ltp

motivation
a=F/m
~F=ma

This Law is a quantitative description of the
effect of the forces experienced by a grad
student. A highly motivated student may still
remain in grad school given encugh flexibility.
As motivation goes to zero, the duration of
the PhD goes to infinity.

PHIZ.STAMNPORI, ELXU

JORGE CHAM(STHE STANFORD DALY

D;(pov) = Div(P) + b, mass point mDw =ma = F

balance equations - closed systems =



palance of (intemal) energy

balance of intermal energy

pol ... Intemal energy density

Q ... heat flux Q- n="T"
Qo ... heat source

0 ... NO heat production

energy equation Dy(poI) = P : D.F — v - by + Div(—Q) + Qo

internal mechanical power thermal external power

balance equations - closed systems =

dissipation inequality

e dissipaltion inequality

Do := IHI™ = 0poD,S + IDiv(H) — 9Hy > 0 D, >0
e identification H = 3Q Ho =39
e with legendre-fenchel transform ¢ =1—-9 S

D() =P: DtF—pthw—posDtﬁ‘i‘QVXIH(Q?) > 0
e flee energy o = (F,9) Dy = Dptp: DiF + Dyyp D0
e definition of stress and entropy (e.g., neo hooke's law)

P = poDry S = —poDyy
e thermodynamic restriction (e.g., fourier's law)
Q- VxIn(d) >0

balance equations - closed systems =

balance of entropy

palance of entropy

poS ... entropy density
H  entropy flux

Ho ... entropy source
H™ .. entropy production Hg® > 0

~H -n=T"°

entropy Inequality’ Di(peS) = Div(—H) + Ho + Hy"

balance equations - closed systems =

thermodynamic systems

isolated system [‘arso.lertid 'sis.tom| thermo-
dynamical system which is not allowed to
have any interaction with its environment.
enclosed by a rigid, adiabatic, imperme-
able membrane.

balance equations 2



thermodynamic systems

adiabatic closed system['o.dre.be.tik klovzd 'sis.tom]
thermodynamic system which is allowed to
exchange exclusively mechanical work,
typically P=PVeyp,..) with its environ-
ment. enclosed by a deformable, adiabatic,
impermeable membrane. characterized through
its state of deformation ¥ .

balance equations 2

thermodynamic systems

open system [ou.pon 'sis.tom] thermodynamic
system which is allowed to exchange
mechanical work, heat and mass, typically
P=PNVeyp,..) , Q=Q(VY,..) and R= R(Vp,...)
with its environment. enclosed by a
deformable, diathermal, permeable membrane.
characterized through its state of
deformation ¥, temperature # and density P.

balance equations 2

thermodynamic systems

closed system [klouzd ‘sis.tom] thermodynamic
system which is allowed to exchange
mechanical work and heat, typically
P=P(Vep,..) and Q=Q(VY,..): with its
environment. enclosed by a deformable,
diathermal, impermeable membrane. charac-
terized through its state of deformation
¥ and temperature 4.

balance equations 2

open system thermoaynamics

,...thermodynamics recognizes no special role of the biological. . ."

pridgman, “the nature of thermodynamics”, [1941]

balance equations - open systems =




why do we need open systems if we have porous media’?

theory of open systems
['ou.pon 'sis.toms]

theory of porous media
['porr.es ‘mixdiz.o]

® constituents spatialy separated  ® local superposition of constituents

e overall behavior priiminary deter- e consideration of mixture of mul-
mined by one single constituent ticle constituents

® oxchange of mass, momentum, @ exchange of mass, momentum,
energy and entropy with environ-  energy and entropy amongst
ment constituents

——————————————————————————————————————————————————————
balance equations - open systems =

palance of mass

simulation of cell growth - cahn-hiliard equation
kuhl & schmid [2006], wells, kuhl & garikipati [2006]

———————————————————————————————————————————————————————
balance equations - open systems

balance of mass

Dt,OO = DIV(R) + Ro

mass flux R
e cel movement (migration)

mass source R,

e call growth (proliferation)

e cal division (hyperplasia)

e cel enlargement (hypertrophy)

piological equillorium

cowin & hegedus [1976], beaupre, orr & carter [1990], harrigan & hamilton [1992],
jacobs, levenston, beaupré, simo & carter [1995], huiskes [2000], carter & beaupreé [2001]

——————————————————————————————————————————————————————
balance equations - open systems
T —

balance of mass

the model does not take explicitly into
account that the body is growing due to the
absorption of some other materials. in
absence of some of the vital constituents,
no growth is possible. conversely, when
part of the material dies, some of the
bricks contained in the cellular membrane
can be re-used by other cells. in this
respect, an approach using mixture theory
might by useful.

ambrosi & molica [2002
balance equations - open systems

1
(%}
N



generic balance equation

general format

A .. balance quant
B fux B-n=T"
C... source

T .. production

Dy(poA) = Div(B+A ® R) + [C+ AR — VxA- R+T]

——————————————————————————————————————————————————————
balance equations - open systems
T —

example of open systems - rocket propulsion

balance of mass
Dim=R with R <0 glection

balance of momentum - volume specific
Diymv] =mDyv + Dymv = f + Rv

balance of momentum - mass specific
mDyv = f With f= fclosed 4 fopen

balance of momentum - rocket head-gjection
Dt[m'v] —RD = fclosed

propulsive force
P =[v—vR  velocity of gjection v

.

example - rocket propulsion 35

balance of (inear) momentum

¢ volume specific version
Di(pov) = Div(P +v ® R) + [by + ¥Ry — Vxv - R]

e subract weighted balance of mass
vDypo = Div(v ® R) + vRy — Vxv- R

® mass specific version
po Dyv = Div(P) + by

mechanical equilbrium

——————————————————————————————————————————————————————
balance equations - open systems
T —

example of open systems - rocket propulsion

a satumn v rocket like the one that took men to the moon has a
mass of 2.500.000 kg at liftoff, it goes straight up verticaly
and bums fuel at a uniform rate of 16.000 kg/s for a duration
of 2 minutes. the exhaust speed of gas from the satum v is
3.0 km/s

what is the speed of the rocket immediately after the
combustion ceases? you should include the effect of gravity
near the surface of the earth, but you can neglect air
resistance.

| plot the bumout veloctty as a function of time over the range of

) ~ Oto 120 seconds to see the increase in speed of the rocket
ey

example - rocket propulsion



example of open systems - rocket propulsion

you MEAN, WRY ARE WE | [ Tenm wow, my| Mo, | MEAN WHY ARE
SUBMITTING CURSELVES TRigHD, | Beal™T WE DOIMETHE PROBLEME
0 GRAD SLHOOL | NSTERD

OF wWorRKNs ouT

GETIWG BICH,
— |GETING ENOUEH
] [ sLEEP AiD he

QULURRES YR |

E LTE?

example - rocket propulsion a7

example of open systems - rocket propulsion

veloclty () = —gt — w In ROERE

g =98 m/s?
T w = 3000m/s
émn
- m(0) = 2.5-10% kg

Ry = —16000kg/s

L d

. ’ N “ tmels e
% velocity  v(t = 120s) = 3207.1 m/s

example - rocket propulsion 39

example of open systems - rocket propulsion

thU —_ fclosed + fopen
with - felosed — i ¢ gravity
[P =[v—vR =wDm

mDyv = —mg — Dymw || :m
D =—g— iDtmw

integration
v(t) = —gt—w 1:((5)) +dm

: m(t) = m(0) + Rt
} velocity
g o(t) = —gt —w In BTG

example - rocket propulsion 38

palance of (intemal) energy

® \Olume specific version
Di(poI)= P :D:F —v- by
+ Div(-Q+ IR)+ [Qo+ IRy — VxI - R]
e subract weighted balance of mass
IDypg=Div(IR)+ IRy —VxI-R
® Mass specific version
poD:I = P:D;F — v - by + Div(—Q) + Qo

energy equilorium

balance equations - open systems  «



balance of entropy

* volume specific version Hit > 0
Dy(poS) = Div(—H + SR) + [Ho + SRy — VxS - R] + HX™
® subract weighted balance of mass
SDipp =Div(SR)+ SRy—VxS-R

® mMass specific version
poDS = Div(—H) + Hy + H"

entropy inequality’

—————————————————————————————————————————————————————————————————————————
balance equations - open systems  «

dissipation inequality
QN Inequality
Dol nt_ 7 VH—19H()ZO
¢ identification i'm sooo

e free eneroy not geH‘in‘ it!
why've we done

® thermodynamic ¢
Sy < ponoll)%Ro S\ /

... aliving organism can only keep alive by continuously drawing from its e

entropy. it feeds upon negative entropy to compensate the entropy increase |
schrodinger "what is lfe?" [1944] u

balance equations - open systems

dissipation inequality

e dissipaltion inequality

Dy := OHI" = poD,S + YDiv(H) — IHy > 0
e dentificaton H=3Q+ S Ho =590+ So
e free energy ¥ =1 (po, F, V)

e Jdefinition of stress and entropy
P = pyDpyp S = —Dyp
¢ thermodynamic restrictions
So < poDp ¥R S > poDpyth5 R Q- VxIn(d) >0

... & living organism can only keep alive by continuously drawing from its environment negative
entropy. it feeds upon negative entropy to compensate the entropy increase it produces by Iving."

schrodinger “‘what s life?" [1944]

balance equations - open systems  «

open systems - dissipation inequality

D():PDtF—pthw—pOSDt'ﬁ—SOﬁ—f—QVXIH('&)EO

with definition of arguments of free energy
=1 (po, F,9) Dytp =Dyh Dyp+ Dp1p : DF + Dyrp Dytd

evaluation of dissipation inequality
DO = [P—poDF¢] : DtF— [pOS—pODm/J]Dtﬁ—F 2 0

provides guidelines for the appropriate choice of the
constitutive equations P = poDrt S =—Dyy

thermodynamically conjugate pars P<=F S+

balance equations - open systems  «



example of open systems - the galileo giant

,...dal che e manifesto, che chi volesse mantener in un vastissimo gigante le proporzioni,
che hanno le membra in un huomo ordinario, bisognereblos o trouar materia molto piu
dura, e resistents per formame lossa o vero ammettere, che la robustezza sua fusse a
proporzione assai piu fiacca, che negl huomini de statura mediocre; altimente
crescendogli & smisurata altezza si vedrebbono dal proprio peso opprimere, e cadere..."

gelleo,"discorsi e dimostrazioni matematiche", [1638]

example - the galileo giant 4

example of closed systems - the galileo giant

« balance equation closed systems  po Dev = Div(P) + by
» neo hookean free energy Yo = 3 Eo[F? —1— 2 In(F)]
« stress from dissipation inequelity P = D g = iEo[ oOF — 2% ]
« quasi-static case poDiv =0
bo = const along the height h
P =[X — h]b

...linear along the height h
[p— pol/po =0

« constant gravity load

o from balance egn linear stress

« Closed system, constant density  p = pg

example - the galileo giant 4

example of open systems - the galleo giant

the tallest man in medical history is
robert pershing wadlow. he was bom
at atton, ilincis, on february 22, 1918,
he was 2.72m / 8ft 111" tal. his
weight was 222.71kg. his shoe size
was 47cm / 185" and his hands
measured 32.4cm / 12.75". his arm
span was 2.88m / 9 1t 5.75" and his
peak daly food consumption  was
8000 calories.

guiness world records [2010)

example - the galileo giant

example of open systems - the galileo giant

[P0/ pol "o = o

[0 — pol/po =0 u=¢p-X

height h

06 06fF
04

02F

= o oo
o o
n B

T

= oo = o

1 1 0 » 1 1 1 1 1 0i
0 0. 8 12 16 0 01 02 -03 -04 -05 0 0.1 02 03 0.4
relative change in density displacement u energy based biological stimulus

0

Figure 7.1: One—dimensional model problem - Closed system - Homogeneous density

example - the galileo giant 4



example of open systems - the galileo giant

« Dalance equations open systems Dipp = Div(R) + TRy
po Dw = Div(P) + b

«free eneray vo = [po/po)" Y8° ¥§*° = § EolF? — 1 — 2 In(F)]

« sfress from dissipation inequalty P = Dptpg = %E0[2F — 2%]

« Quasl-static case poDiv =0

e constant gravity load bo = const along the height h

« from alance ean linear stress P=[X—h]by
...linear along the height h
« Open system, varying density Dipo=Ro=0

Ro = [po/p5) " po — po

example - the galileo giant 4

example of open systems - the galleo giant

3 k _ *] —m
[ — pol/po u=¢—-X [po/ P5] ™™o
< 1r e 1r
= i
2 =
208 2o08fF
0.6 06
04 ' 04 '
v ¥
02 4 02 3
' [
04 0 04 08 12 16 Co 0.04 -008 012 -0.16 0 0.01 002 003 0.04
relative change in density displacement u energy based biological stimulus

Figure 7.2: One—dimensional model problem - Open system - Homogeneous stimulus

example - the galileo giant 50





