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day | date topic
tue | jan |10 motivation - everything grows!
thu | jan |12 basics maths - notation and tensors
tue | jan |17 basic kinematics - large deformation and growth
04 M t' t' <EE; i‘ar! 19 kinematics - growing hearts E—
B nema IC eq ua IOnS B tue | jan |24 guest lecture - growing skin
1 1 thu | jan |26 guest lecture - growing leaflets
Nnematlos Of grOWth tue | jan |31 basic balance equations - closed and open systems
thu | feb |02 basic constitutive equations - growing tumors
tue | feb |07 volume growth - finite elements for growth
%%"2‘?“.;‘5,‘31;%%%&; WELL, THERE 1S STILL MUCH DS~ | SEE WPTE% B:Ng\ thu | feb |09 volume growth - growing arteries
gﬁg\n‘(ﬁ%?ﬁﬁﬂk A NERD e tue | feb |14 volume growth - growing skin
mh‘""‘fu_?“ thu | feb |16 volume growth - growing hearts
tue | feb |21 basic constitutive equations - growing bones
thu | feb |23 density growth - finite elements for growth
tue | feb |28 density growth - growing bones
thu | mar |01 everything grows! - midterm summary
tue | mar |06 midterm
thu | mar |08 remodeling - remodeling arteries and tendons
tue | mar |13 class project - discussion, presentation, evaluation
thu | mar |15 class project - discussion, presentation, evaluation
thu | mar |15 written part of final projects due

e
04 - kinematic equations 1 where are we??7?

growth, remodeling and morphogenesis scaling growtn

growth [grouvf] which is defined as added
mass, can occur through cell division
(hyperplasia), cell enlargement
(hypertrophy), secretion of extracellular
matrix, or accretion @ external or internal
surfaces. negative growth (atrophy) can Pseudopriacanthus altus
occur through cell death, cell shrinkage,
or resorption. in most cases, hyperplasia
and hypertrophy are mutually exclusive
processes. depending on the age of the
organism and the type of tissue, one of
these two growth processes dominates.

Argyropelecus olfersi

Sternoptyx diaphana

oot

taler ,biomechanics of growth, remodeling and morphogenesis’ [1995] sir d'arcy thompson "on growth and form” [1817
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tip growth

25sec 50sec 7.5sec 10.0sec 125sec 150sec 17.5sec 20.0sec 225sec

time lapse sequence of a growing lily pollen tube. note that the morphology of the tube is drawn by
the expanding tip and doss not change behind it. tip growth is a common mode of cell
morphogenesis observed in root hairs, fungal hyphae, pollen tubes, and many unicslular algae.
these organisms have cell walls with distinct polymer compositions end structures.

dumais, long, shaw (2004)

kinematics of growth 5

suggested reading

CONTINUUM :lm;:lnlear lc'cu-unuum'lemnanict B
or finite elerment ana NONLINEAR
MECHANICS e SOLID
Concise Theory and MECHANICS
Problems y

LAWRENCE E MALVERN

Introduction 5
to the Mechanics P. Chadwick
of a Continuous Medium
malvern le: introduction to the mechanics of a continuous medium, prentice hall, 1969

chadwick p: continuum mechanics - concise theory and problems, dover reprint, 1976
bonet j, wood rd: nonlinear continuum mechanics for fe analysis, cambridge university press, 1997

holzapfel ga: nonlinear solid mechanics, a continuum. approach for emg\meemg, ohn vv\\ex & sops, 2000

introduction to continuum mechanics

surface growth
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Fig. 5. Simulation study of surfaces with a fractal cascade of waves at the margin. (A) A kale (a variety of Brassica oleracea) leaf showing
a superposition of waves with a decreasing amplitude and wavelength towards the leaf margin. (B) The fractal character of the leaf
margin. (C) A computational representation of a leaf. The surface is divided into rows of geometrically similar rectangles, each row with
twice the number of rectangles as its predecessor. The first two rows are highlighted in green. Each rectangle is further subdivided into
three triangles. Proportions are controlled by the scaling ratio r, initially set to }, such that si.1=hi=rs; and d;=rv/2s; for i=0,1,2,....

prusinkiewicz & de reuile "constraints of space in plant development” [2010]

kinematics of growth 6

the potato @D equations

e kinematic equations - what's strain? €= Al
general equations that characterize the deformation
of a physical body without studying its physical cause

e balance equations - what's stress”? o=5%

general equations that characterize the cause of
motion of any body

e congtitutive equations - how are they related? o= Ee

material specific equations that complement the set
of governing equations

————————————————
introduction to continuum mechanics




the potato @D equations

e kinematic equations - why not € =4 ?
iNnhomogeneous deformation » non-constant
finite deformation » non-linear
inelastic deformation » growth tensor

F=Vx¢p
B =y« Iy

e balance equations - why not e =% ?  Div(P) + pbo =0

equlibrium in deformed configuration » multiple stress measures

e constitutive equations - why not o = Ee?
finite deformation » non-linear P =P(F)
inelastic deformation » interal variables P=P(p,F,F,)

introduction to continuum mechanics

potato - kinematics

¢ nonlinear deformation map ¢
z=p(X,t) wih ¢:BoxR— B
e spatial derivative of ¢ - deformation gradient

de=F.dX Wt F:TB,— TB, F=§—§

t fixed
———————————————————————————————————————————————

kinematic equations 1

CONTINUUM
MECHANICS

Concise Theory and
b

kinematic equations S

ye
P. Chadwick

kinematics [kmo'metiks] is the study of motion
per se, regardless of the forces causing
it. the primitive concepts concerned are
position, time and body, the latter
abstracting into mathematical terms
intuitive ideas about aggregations of
matter capable of motion and deformation.

Chadwick ,Continuum mechanics" [1976]
——————————————————————————————————————————————————————————

kinematic equations 10

potato - kinematics

e transformation of line elements - deformation gradient F;;
. dpi
dz; = F; dX; Wih Fy;:TBy—TB, Fiyj= oo
e Uniaxial tension (incompressible), simple shear, rotation

‘ a 0 0 140 cos(0) sin(9) 0
Fii=10a720 | Fg"={010 | F?* = |—sin(6) cos(0) 0
0 0a3 001 0 01

kinematic equations 12



potato - kinematics

e transformation of volume elements - determinant of F'
dVp =dX; - [dX, xdX3] dV, =da; - [day x dzs)
= det([dxy, das, das))
= det([dX,d X5, dX3)) = det(F) det([dX,d X, dX3])
e changes in volume - determinant of deformation tensor J
dVi = JdVp J = det(F)

kinematic equations 13

Kinematics of finite growth
_Bo /f\ B
B——0

[1] consider an elastic body Boat time t,,unloaded &stressfree

[2] imagine the body is cut into infinitesimal elements each of
which is alowed to undergo volumetric growth

kinematics of growth 15

M’nematics of finite grovvth

D=0

[1] consider an elastic body Boat time t,,unloaded &stressfree

kinematics of growth 14

M’nematics of finite grovvth

D0
F, O\ @

[1] consider an elastic body Boat time t,,unloaded &stressfree

[2] imagine the body is cut into infinitesimal elements each of
which is alowed to undergo volumetric growth

[3] after growing the elements, B, may be incompatitle

kinematics of growth 16



M’nematics of finite grovvth

D=0
wo ﬂ/ 5

[1] consider an elastic body Boat time t,,unloaded &stressfree

[2] imagine the body is cut into infinitesimal elements each of
which is alowed to undergo volumetric growth

[3] after growing the elements, B, may be incompatitle
[4] loading generates compatible current configuration B

kinematics of growth 17

potato - kinematics of fintte growth

* incompatible growth configuration B, & growth tensor F,
F=F, F,
rodriguez, hoger & mc culloch [1994]

kinematics of growth 19

Kinematics of finite growth

F=F, F,

gowth tensor  Fy \ / F,

multiplicative decomposition

Lee [1969], Simo [1992], Rodriguez, Hoger & Mc Culloch [1994], Epstein & Maugin [2000)],
Humphrey [2002], Ambrosi & Molica [2002], Himpel, Kuhl, Menzel & Steinmann [2005]

kinematics of growth 18

potato - kinematics of fintte growth

gowth  J, > 1 Fg\
resorption J, < 1

* changes in volume - determinant of growth tensor J,
av, = J,dV, Jy = det(F,)

kinematics of growth



med38a - continuum mechanics - 2010

Kinemetics of cardiac growth @_

[1] Determine three vectors dX; that span the tetrahedron at baseline.

Take an arbitrary point of the tetrahedron as origin, e.g., X4, and calculate the three
vectors dX;, dX5, and dX3 from the origin to any other point using the coordinates X
at baseline such that dX; = X; — X, fori =1,2,3.

matlab y
dX1=X1-X4 ,ﬁl
dX2 = X2 - X4 W
dX3 = X3 - X4 0
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dX1 = [+0.00, -0.40, -0.70]
dX2 = [+0.00, +0.40, -0.70]
dX3 = [ -0.30, +0.39, -0.70]

example - growth of the heart 2

Kinemetics of cardiac growth @_

given: coordinates of z
* baseline configuration X, grey
* grown configuration x, red
e fiber angle +10°

—
RN i
- ’ v \

043

X1 =[+2.80;-0.27; +3.75]; x1 =[+2.68; -0.44; +4.34];

X2 =[+2.80; +0.53; +3.75];
X3 =[+R.50; +0.52; +3.75];
X4 = [+2.80; +0.13; +4.45];

x2 = [+2.62; 0.44; +4.34];
x3 = [+2.32; 0.44; +4.35];
x4 = [+2.60; 0.07; +4.85];

example - growth of the heart 2

Kinemetics of cardiac growth @_

[2] Determine the same three vectors dx; that span the tetrahedron after growth.
Take the same point as origin, e.g., x4, and calculate the vectors dxi, dx», and dx3
from the origin to any other point using the coordinates x after growth such that
dx; =x; —xsfori=1,2,3.

matlab y
dxl =x1-x4 ﬂﬁ!
dx2 =x2 - x4 W
Ax3 = x3 - x4 1’!’

dx1 = [+0.02, -0.51, -0.51]
dx2 = [+0.02, +0.37, -0.51]
dx3 = [ -0.28, +0.3%7, -0.50]

N

E \‘%a“.
RN
/ -

example - growth of the heart 2



Kinematics of cardiac growth @_

[3] Determine the growth tensor F® that maps the baseline line elements dX; onto
the grown line elements dx;.

The growth tensor maps line elements according to dx; = F¢ - dX;. The application
of this mapping to all three line elements dX; defines three vector valued equations,
i.e., nine equations to solve for the nine components of F&. To obtain a more compact
notation, rearrange all baseline line elements from [1] and all grown line elements from
[2] in 3 x 3 matrices, ie., C := [ dXy; dX5; dX3 ]| and ¢ := [ dxq; dxp; dx3 |. Now,
determine the growth tensor F# by using the equation F¢ - C = ¢, thus F¢ = ¢- C ..

matlab

C=[dX1l dX2 dX3 J; c=[dxl dx2 dx3 J; F=¢/C;

dxl_check=F * dX1; dx2 _check=F * dX2; dx3_check=F * dX3;
+1.0000 0.0000 -0.0286

F= -0.0367 +1.1000 +0.1000
-0.0333 0.0000 +0.7286

example - growth of the heart 2

Kinemetics of cardiac growth @_

[5]1 Determine the grown fiber direction n™ = Fs- N,
The growth tensor can be used to map the measured baseline fiber direction N* onto
the grown fiber direction #™. Determine #™ and comment on how N* and n™ deviate.

matlab

alpha =10.0;

N_fib = [0.0; -cosd(alpha); sind(alpha)]

n_fib=F * N_{fib;

theta = acosd((n_fib'*N_fib)/(norm(n_fib) *norm(IN_fib)))

N_fib=[ 0.0000, -0.9848, +0.1736]
n_fib =[-0.0080, -1.0659, +0.1265]
theta = 3.2420

example - growth of the heart 2

Kinemetics of cardiac growth @_

[4] Control your results by calculating dx; = F& - dX;.
Do the calculated grown line elements dx; match the ones you had calculated in [2]?

matlab

dx1l_check =F * dX1,
dx2_check =F * dX2&;
dx3_check =F * dX3;

dx1_check = [+0.02, -0.51, -0.51]
dx2_check = [+0.02, +0.37, -0.51]
dx3_check = [ -0.28, +0.37, -0.50]

example - growth of the heart 2

Kinemetics of cardiac growth @_

[6] Determine the fiber stretch upon growth A = /n®™ . n®,

Since the fiber orientation N was given as a unit vector, the length of the grown vec-
tor n = F - N*™ corresponds to the relative change in fiber length, i.e., the amount of
growth along the fiber direction, A* = \/n™ - n* = /N . Fst . F&. N™,

lambda = 1.0734
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ennis, nguyen, riboh, wigstrém, harri

example - growth of the heart 2



Kinemetics of cardiac growth @_

[7] Determine the second order Green Lagrange strain tensor E = 1 [F- F —I.
E is called the Green Lagrange strain tensor and it is used to characterize strains with
respect to the reference configuration in a finite strain setting.

[8] Determine the displacement gradient tensor H = F — 1.
H = Vu is the nonsymmetric displacement gradient tensor which can also be ex-
pressedas H =0u /90X =9d[x— X] /90X =F—I.

matlab matlab
E=1/2 * (F'*F - eye(3)) H=F-eye(3)
0.0012 -0.0202 -0.0283 0.0000 0] -0.0286
E=-0.0202 0.1050 0.0550 H=-0.0367 0.1000 0.1000
-0.0283 0.0550 -0.2292 -0.0333 0] -0.2714

example - growth of the heart 2

Kinemetics of cardiac growth @_

[11] Determine the volume change J& = det(F*) and compare it with the small strain
volume dilation e = tr(e).
What does this imply in terms of tissue growth?

matlab

J=det(F)

dV = dot(dX3,cross(dX2,dX1))
dv = dot(dx3,cross(dx2,dx1))
J_check=dv/dV;

e = trace(epsilon)

J=0.8004
J_check = 0.1345/0.1608 = 0.8004
e=-0.1714

example - growth of the heart J

Kinemetics of cardiac growth @_

[9]1 Determine the small strain tensor e = % (H + HY).
Compare the small strain approximation e with the large strain Green Lagrange tensor
E and comment on your results.

[10] Determine the normal strain ¢, = N® - ¢ - N,
Compare the small strain approximation of the normal strain €, with the large strain
fiber stretch As.

matlab
epsilon= 1/2 * (H+H'") eps_.n =N_fib'*epsilon*N_fib;

0.0000 -0.0183 -0.0310

epsilon =-0.0183 0.1000 0.0500 eps_.n =0.0717
-0.0310 0.0500 -0.2714

example - growth of the heart 30

Kinemetics of cardiac growth @_

surgically implantation of 4x3 beads
across the left ventricular wall

4d coordiantes from in vivo biplane
videofluoroscopic marker images

tsamis, cheng, nguyen, langer, miler, kuhl [2012]

example - growth of the heart 2



Kinemetics of cardiac growth @_

deformation

@(X,1) = 3,5 ¢/(t) Ni(X)

valid for all data points
x,(0) = X4 (1) Ni(X,)
C

with coordinates
_ t
X = [-xC’ Xl xr]

system for 12 markers
X()3x12) = €(D3x91 - Njox12]

pseudo inverse to determine coefficients
c(D3x9) = X(H)3x12] ‘N[[12x9] - [ Niox12] 'N[[12><9] I

example - growth of the heart 3

kinematics of cardiac growth @
epi mid endo
20% depth p 50% depth  p 80% depth p
Fe. 1.00£0.12  0.96 1.03£0.14  0.46 1.02+£0.10 0.4
FS 0.04+0.14 042 | 001£0.10 077 | 0.01+0.09 0.6

F%R -0.07+£0.29 046 | -0.03+0.16 0.61 0.05+0.14 0.29
-0.02£0.17 0.75 | -0.04£0.13 0.33 | -0.04+£0.11 0.24

1.10+£0.15 0.06 1.10+£0.13  0.03 1.11+£0.11 0.01
F‘ER 0.02+0.16 0.71 0.10£0.20 0.11 0.18+0.34 0.12

Fre || —0.01£0.09 0.64 | -0.03+0.17 054 | -0.05£0.19 041

Fa 0.00£0.05 0.86 | -0.00£0.09 096 | -0.01x0.11 0.67

Foa 0.68+0.15 0.00 | 0.73+0.15 0.0 | 0.77+0.22 0.1
| )& ][ 074£0.19 0.00 | 0.82+0.19 001 | 0.89+0.21 0.10 ]
[ A& [ 103:0.12 049 | 1.04x0.16 036 | 1.08+0.11 004 |

‘ ‘ i

example - growth of the heart 35

Kinemetics of cardiac growth @_

3

deformation

e(X, 1) = 220 ex(t) Ni(X)
deformation gradient

FX.1 =35 e/() ® VNi(X)
spatial gradient

V(o) = [8.(0), 8i(0), 3,(o)]"
volume changes

J(X,1) = det(F(X,1))

fiber stretch

(X, ) = [f(X)-F(X,0) - F(X, 1) f(X)]'?

example - growth of the heart Z

3

Kinemetics of cardiac growth @_

deformation

e(X,1) = 3,5 e1(t) Ni(X)

green lagrange strains
EX,n=3[F-F-1I]

fiber strain

Ee(X, 1) = f(X) - E(X, 1) - f(X)
relation of fiber strain to fiber stretch

Err= 12 /ng —-1]

fiber stretch

S N Ae(X, 1) = [f(X) - F'(X,0)- F(X, 1) f(X)]'?
| |

example - growth of the heart 3



Kinemetics of cardiac growth @_

* longitudinal growth by maore than 10%
« radial thinning by more than 20%

« fioer lengthening by more than 5%

* volume decrease by more than 156%

epi mid endo

20% depth p 50% depth p 80% depth p
ES. 0.03+0.15 0.56 | 0.06+0.18 027 | 0.05+0.13 0.20
ES 0.12+0.17 0.04 | 0.12+0.15 0.03 | 0.13x0.12 0.00
ES, || —0.21x0.12 0.00 | —0.19+£0.09 0.00 | —0.10+0.15 0.05
ES, 0.01x0.15 0.79 | -0.01x0.09 0.63 | —0.01+0.06 0.46
ES 0.00+0.08 0.86 | 0.06+0.11 0.10 | 0.11x0.19 0.10
ES, || —0.04x0.17 051 | -0.03+0.11 039 | 0.00+0.10 0.88

[ EE ][ 0.03:0.13 042 [ 0.06+0.18 031 | 0.09+0.12 0.03 |

example - growth of the heart a7

M’nematics of finite grovvth

D=0

F, O\, /Fe

[3] after growing the elements, B, may be incompatiole

[4] loading generates compatible current configuration B

concept of residual stress 39

WEEK 1 - CARDIAC STRAINS WEEK 8 - CARDIAC STRAINS
0.00

—0.05

Ecc
endo mid epi

—0.10

+0.05

0.00
—0.05
—0.10

=1
endo mid epi

+0.04

+0.02

Egg
endo mid epi

0.00

ED ES ED ES ED ES ED ED ES ED ES ED ES ED

example - growth of the heart 38

M’nematics of finite grovvth

00
" Eﬁa

| after growing the elements, By may be incompatible

3
[3a] we then first apply a deformation Fc to squeeze the
elements back together to the compatiole configuration B,

[4] to generate the compatible current configuration By

concept of residual stress 40



M’nematics of finite grovvth

D=0

Bs B.tF

F\lEI

[3] after growing the elements, B, may be incompatible
3

a] we then first apply a deformation F to squeeze the
elements back together to the compatiole configuration B,

[3b] and then load the competible configuration B. by F
[4] to generate the compatible current configuration By

concept of residual stress #

Kinematics of finite growth
F=F,-F,. F,

“.” ‘-’ fotal stress

p B.1F
B,
—> O.C

residual stress

the additional deformation of squeezing the grown parts back to a com-
patible configuration gives rise to residual stresses (see thermal stresses)

residual stress

concept of residual stress 4

Kinematics of finite growth
F=F, -F, F,

0D—0

B.tF,

gowth tensor ~ F, \ @ ﬁ F.=F, F,

multiplicative decomposition

lee [1969], simo [1992], rodriguez, hoger & mc culloch [1994], epstein & maugin [2000),
humphrey [2002], ambrosi & molica [2002], himpel, kuhl, menzel & steinmann [2005]

concept of residual stress a2

Kinematics of finite growth

Deformation states of an artery

Zero stress state Residually stressed state Loaded state
o, o

residual stress

fung (19901, homy, chlup, zitoy, mackow [2000]

concept of residual stress 4



the classical opening angle experiment

F i g -
| Thoradc a?rta - female, 32 years old,

- 10 hours

an existence of residual strains in human arteries is well known. ft can be obsenved as an
opening up of a circular arterial segment after a radial cut. an opening angle of the arterial
segment is used as a measure of the residual strains generally.

fung [1990]_nhomy, chlup, zitny, mackov [2000]

concept of residual stress 4

the classical opening angle experiment

global geometrical adaptation - schematic diagram of an arterial
Cross section in the zero-stress state (A) and in the loaded state (B)
tsamis & stergiopulos [2009]

concept of residual stress a

the classical opening angle experiment

Tleum

Duodenum Jejunum

photographs showing specimens obtained from different locations in - the intestine in the no-
load state (left, closed rings) and the zero-stress state (fight, open sectors). the rings of
jejunum (site 5 to site 8) tumed inside out when cut open

zhao, sha, zhuang, gregersen [2002]

concept of residual stress 4

convince yourself - residual stresses in rhubart

o [ ()

residual stresses can be easiy visualzed in a stak of rhubarb made up of an outer layer,
consisting of epidermal tissue and the collenchyma layers, and an inner layer consisting of
parenchyma. when peeled, the outer strip shortens by -2% whie the inner layer
extends by +6%. the inner tissue grows faster than the outer tissue creating residual
stresses resulting from axial tension in the outer wall and axial compression in the inner layer.

atkinson [1900], vandiever & goriely [2009]
————————————————————————————————————————————————————————

concept of residual stress 4





