O3 - kinematic equations -
large deformations and growth
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O3 - kinematic equations

problem 4 - design your own project

Now, it’s time to design your own class project. At this point, you don’t have to commit
to a particular type of growth. This is more meant for you to brainstorm and think of
some form of mechanically driven growth that you are really excited about. We will
carefully read your ideas and give you feedback and literature hints. Describe

o the type of tissue (hard, soft)

o the type of growth (density, surface, volume)

o the level at which you would like to study growth (cellular, tissue, organ)

o the mechanical driving force for growth (strain, stretch, stress, pressure, shear, force)
o the type of adaptation (disease specific, treatment specific, training, ...)

o the way in which you want to study growth (review, analytical, computational, ...)

Write a short summary about what you would like to study, and, if you decide to do
this in a group, with whom you would like to work.

homework 01 - due thu in class 3

P e —
day | date topic
tue | jan |10 motivation - everything grows!
thu | jan |12 basics maths - notation and tensors

< tue | jan |17 basic kinematics - large deformation and growth ~ ——>

thu | jan |19 kinematics - growing hearts
tue | jan |24 guest lecture - growing skin
thu | jan |26 guest lecture - growing leaflets
tue | jan |31 basic balance equations - closed and open systems
thu | feb |02 basic constitutive equations - growing tumors
tue | feb |07 volume growth - finite elements for growth
thu | feb |09 volume growth - growing arteries
tue | feb |14 volume growth - growing skin
thu | feb |16 volume growth - growing hearts
tue | feb |21 basic constitutive equations - growing bones
thu | feb |23 density growth - finite elements for growth
tue | feb |28 density growth - growing bones
thu | mar |01 everything grows! - midterm summary
tue | mar |06 midterm
thu | mar |08 remodeling - remodeling arteries and tendons
tue | mar |13 class project - discussion, presentation, evaluation
thu | mar |15 class project - discussion, presentation, evaluation
thu | mar |15 written part of final projects due

where are we???

final projects - me337 2010

» mechanically driven growth of skin: chris, adrlan, xuefeng
e Muscle growth: brandon, robyn, esteban, van, jenny

« cardiac growth review: manuel

« cardiac growth in response to training: haolly, tyler

« cardiac growth in response to heart attack:amit

« cardiac or arterial growth: andrew

« cardiac growth in response to medical devices: kyla, andrew
« DoNe growth in response to medical devices: chinedu

« impact of cbesity on osteocarthritis: abhishek, chris

o tumor growth: apoorva

« facial volume aging: jonathan

« idiopathic scoliosis or rhubarb growth: anusuya

» driving forces for different types of growth: james

homework 01 - due thu in class 4



growth, remodeling and morphogenesis

growth [grouvf] which is defined as added
mass, can occur through cell division
(hyperplasia), cell enlargement
(hypertrophy), secretion of extracellular
matrix, or accretion @ external or internal
surfaces. negative growth (atrophy) can
occur through cell death, cell shrinkage,
or resorption. in most cases, hyperplasia
and hypertrophy are mutually exclusive
processes. depending on the age of the
organism and the type of tissue, one of
these two growth processes dominates.

taber ,biomechanics of growth, remodeling and morphogenesis” [1995]

||

introduction

growth, remodeling and morphogenesis

morphogenesis [mo:r.fo'dzen.o.sis]lis the generation
of animal form. usually, the term refers to
embryonic development, but wound healing
and organ regeneration are also
morphogenetic events. morphogenesis
contains a complex series of stages, each
of which depends on the previous stage.
during these stages, genetric and
environmental factors guide the spatial-
temporal motions and differentiation
(specification) of cells. a flaw in any one
stage may lead to structural defects.

taber ,biomechanics of growth, remodeling and morphogenesis” [1995]

introduction 7

growth, remodeling and morphogenesis

remodeling [ri'mad. l.ing] involves changes in
material properties. These changes, which
often are adaptive, may be brought about by
alterations in modulus, internal structure,
strength, or density. for example, bones,
and heart muscle may change their internal
structures through reorientation of
trabeculae and muscle fibers, respectively.

taber ,biomechanics of growth, remodeling and morphogenesis” [1995]

growth, remodeling and morphogenesis

mathematical descriptions of growth [grouf]
in plants and animals have been published
since the 1940s. most of these analyses are
purely kinematic and many borrow from the
methods of continuum mechanics to describe
growth rates and velocity fields. during
the last quarter century, mechanical
theories of growth have been formulated.

taber ,biomechanics of growth, remodeling and morphogenesis” [1995]
———————————————————————————————————————————————————————————————————
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sir d'arcy thompson "on growth and form' [1917]

kinematics of growth 0

tip growth
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unlike diffusely growing cells that expand over their entire surface or large portions of it, cell wall
expansion in pollen tubes is confined to the apex of the cel. this highly polarized mechanism is
cdled tip growth, polen tubes have the function to rapidly grow and deliver the sperm cells from
the pcllen grain to the ovule, kroeger, geitrann, grant [2008]

kinematics of growth 1

tip growth

25sec 50sec 7.5sec 10.0sec 125sec 150sec 17.5sec 20.0sec 225sec

time lapse sequence of a growing lily pollen tube. note that the morphology of the tube is drawn by
the expanding tip and doss not change behind it. tip growth is a common mode of cell
morphogenesis observed in root hairs, fungal hyphae, pollen tubes, and many unicslular algae.
these organisms have cell walls with distinct polymer compositions end structures.

dumais, long, shaw (2004)

kinematics of growth 10

tip growth

are the polien grains, the cylindrical objects are the paollen tubes, or cellular protuberances growing
from the grains (left). brightfield microscopy of the apical region of a lly pollen tube. the outermost
end of the tube is filed mainly with delivery vesicles. kroeger & gelimann [2012

kinematics of growth 12



surface growth surface growth

A B ! . (o] '
Fig. 1. lllustration of Gauss's Theorema Egregium. Change of metric in a regular hexagon (A), induced by the removal of a triangle,
produces a cup-like shape (positive Gaussian curvature) (B). Conversely, insertion of a triangle produces a saddle shape (negative

curvature) (C).

Fig. 3. Snapshots from an interactive program illustrating relations between growth, metric, and form (Matthews, 2002). The simulation
begins with a relaxed square shape. Deposition of a growth-inducing morphogen (blue) in the central parts of the surface causes the
formation of a cup-like shape (A). Deposition of the morphogen at the margin, with the concentrations slowly decreasing towards the
centre, induces a saddle shape (B). Deposition of the morphogen along the margin, with the concentration quickly decreasing towards
the centre, results in a wavy border (C).

prusinkiewicz & de reuile "constraints of space in plant development” [2010]

kinematics of growth

surface growth

sample fixed axis
rod \\

growing edge B
sample edge segment
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Fig. 4. Simulation study of wavy leaves. A photograph (A) and a simulation model (B) of Asplenium australasicum leaves showing simple

waves along the margin. The model was constructed by joining surface models representing the left and right parts of the blade along Fig. 5. Simulation study of surfaces with a fractal cascade of waves at the margin. (A) A kale (a variety of Brassica oleracea) leaf showing
the midrib. Each surface was represented as a sequence of rods spanning the area between a fixed axis and a growing edge (C). An a superposition of waves with a decreasing amplitude and wavelength towards the leaf margin. (B) The fractal character of the leaf
increase in the growing edge length causes buckling, which is controlled by the relative strength of springs that counter out-of-plane margin. (C) A computational representation of a leaf. The surface is divided into rows of geometrically similar rectangles, each row with
dislocation and springs that counter bending of the growing edge (D). Simulations show that increasing the strength of the former type of twice the number of rectangles as its predecessor. The first two rows are highlighted in green. Each rectangle is further subdivided into
springs compared to the latter type decreases the wavelength and amplitude of the waves three triangles. Proportions are controlled by the scaling ratio r, initially set to %, such that si.1=hi=rs; and d; :r\/fsi TOR=05152 s
prusinkiewicz & de reuile "constraints of space in plant development” [2010] prusinkiewicz & de reuile "constraints of space in plant development” [2010]

kinematics of growth kinematics of growth



suggested reading

CONTI N U UM Nonlinear continuum mechanics

for finite element analysis _ NONLINEAR
MECHANICS i " SOLID
Concise Theory and i f MECHANICS
Problems y {

Introduction .
to the Mechanics P. Chadwick

of a Continuous Medium

malvern le: introduction to the mechanics of a continuous medium, prentice hall, 1969

chadwick p: continuum mechanics - conc r reprint, 1976

bonet j, wood rd: nonlinear continuum mech: or fe analys mbridge university press, 1997
holzapiel ga: nonlinear sclid mechanics, a continuum approach.for engineering, johnawiey & .sons, 2000

introduction to continuum mechanics

continuum Mmechanics

continuum mechanics [kon'tm.ju.om mo'keen.iks] is
the branch of mechanics concerned with the
stress in solids, liquids and gases and the
deformation or flow of these materials. the
adjective continuous refers to the simpli-
fying concept underlying the analysis: we
disregard the molecular structure of matter
and picture it as being without gaps or
empty spaces. we suppose that all the
mathematical functions entering the theory
are continuous functions. this hypothetical
continuous material we call a continuum.

malvern ,introduction to the mechanics of a continuous medium" [1969]
R R R R R« w—w——

introduction to continuum mechanics

continuum Mmechanics

continuum mechanics [kon'tm.ju.om mo'ken.iks] is a
branch of physics (specifically mechanics)
that deals with continuous matter. the fact
that matter is made of atoms and that it
commonly has some sort of heterogeneous
microstructure is ignored in the simplify-
ing approximation that physical quantities,
such as energy and momentum, can be handled
in the infinitesimal limit. differential
equations can thus be employed in solving gsn
problems in continuum mechanics. Lt

continuum mMmechanics

continuum hypothesis [kon'tm.ju.om hai'pa:f.o.sis]
we assume that the characteristic length
scale of the microstructure is much smaller
than the characteristic length scale of the
overall problem, such that the properties
at each point can be understood as averages
over a characteristic length scale

lmicro < laverg P lconti
example: biomechanics

lmicro — lcells ~ 10[&1’11

lconti - ltissue ~ 10cm
the continuum hypothesis can be applied when analyzing tissues

introduction to continuum mechanics =




the potato equations the potato equations

e kinematic equations - what's strain® e=4 e kinematic equations - why not €= 447
general equations that characterize the deformation iNnhomogeneous deformation » non-constant
of a physical body without studying its physical cause finite deformation » non-linear F=Vxp
Inelastic deformation » growth tensor Fe=Fq+ Py
* balance equations - what's stress”? o=7 . . .
general equations that characterize the cause of * balance equations - why not @ = 37 Div(P) +pbo =0
motion of any body equilibrium in deformed configuration » multiple stress measures
e constitutive equations - how are they related? o= FEe e constitutive equations - why not o = Ee?
material specific equations that complement the set finite deformation » non-linear P =P(F)
of governing equations inelastic deformation » internal variables P=P(p,F,F,)
— —————————————————————————————————————————————————————————————————————————

introduction to continuum mechanics = introduction to continuum mechanics =

T — E——
CONTINUUM
MECHANICS
kinematic equations kinematic equations
kinematic equations [kino'metik 1'kwerzons] de- o
scribe the motion of objects without the P. Chadhick
consideration of the masses or forces that kinematics [kmometiks] is the study of motion
bring about the motion. the basis of kine- per se, regardless of the forces causing
matics is the choice of coordinates. the it. the primitive concepts concerned are
1st and 2nd time derivatives of the posi- position, time and body, the latter
tion coordinates give the velocities and abstracting into mathematical terms
accelerations. the difference in placement intuitive ideas about aggregations of
between the beginning and the final state matter capable of motion and deformation.

of two points in a body expresses the nu-

merical value of strain. strain expresse5>ol“
. . . o
itself as a change in size and/or shape. =~=

W IIpEDIA Chadwick ,Continuum rmechanics’ [1976)

kinematic equations 2 kinematic equations 2




potato - kinematics

® nonlinear deformation map ¢
z=p(X,t) wih ¢:BoxR— B
e spatial derivative of ¢ - deformation gradient

de=F.dX Wth F:TB,—TB, F:g_;

t fixed
———————————————————————————————————————————————————————————————————————————

kinematic equations 2

potato - kinematics

e transformation of volume elements - determinant of F'
dVp =dX; - [dX, xdX3] dV, =da; - [day x dzs)
= det([dxy, das, das))
= det([dX,d X5, dX3)) = det(F) det([dX,d X, dX3])
e changes in volume - determinant of deformation tensor J
dVi = JdVp J = det(F)
——————————————————————————————————————————————————————

kinematic equations 2

potato - kinematics

e transformation of line elements - deformation gradient  F;;

, Oyp;
.= F.. . owith  Fj; : TB TB, Fij=+
ST SO s ST T8
e Uniaxial tension (incompressible), simple shear, rotation

‘ a 0 0 140 cos(0) sin(9) 0
F" = l 0a~z 0 F%hr — [O 10 F;rjot — [—sin(@) cos(6) 0 ]
0 0az 01 0 01
——————————————————————————————————————————————————————
kinematic equations 2

potato - kinematics

e terporal derivative of ¥ - velocity (material time derivative)

¢
v=Dyp=—- wih v:By xR — R?

ot X fixed

e temporal derivative of v - acceleration
| o
ot Xﬁxe?i ot

kinematic equations 2

a=Dww=

with @ : By x R — R

X fixed



volume growth

volume growth [valjuim grovf] is conceptually
comparable to thermal expansion. in linear
elastic problems, growth stresses (such as
thermal stresses) can be superposed on the
mechanical stress field. in the nonlinear
problems considered here, another approach
must be used. the fundamental idea 1is to
refer the strain measures in the consti-
tutive equations of each material element
to its current zero-stress configuration,
which changes as the element grows.

taber " biomechanics of growth, remodeling and morphogenesis” [1995]

kinematics of growth 2

Kinematics of finite growth
_Bo /f\ B
B—0

[1] consider an elastic body Boat time t,,unloaded &stressfree

[2] imagine the body is cut into infinitesimal elements each of
which is alowed to undergo volumetric growth

kinematics of growth J

Kinematics of finite grovvth

i)

o
S

[1] consider an elastic body Boat time t,,unloaded &stressfree

kinematics of growth 30

M’nematics of finite grovvth

D=0
F, O\ @

[1] consider an elastic body Boat time t,,unloaded &stressfree

[2] imagine the body is cut into infinitesimal elements each of
which is alowed to undergo volumetric growth

[3] after growing the elements, B, may be incompatitle

kinematics of growth 2



M’nematics of finite grovvth Kinematics of finite growth

0D—0
£\ ﬂ/ﬂ H H

[1] consider an elastic body Boat time ¢y, unloaded &stressfree growth tensor - F'g \ E/ F.

[2] imagine the body is cut into infinitesimal elements each of
which is alowed to undergo volumetric growth

[3] after growing the elements, B, may be incompatitle
. . ‘ ‘ Lee [1969], Simo [1992], Rodriguez, Hoger & Mc Culloch [1994], Epstein & Maugin [2000)],
[4] loading generates compatible current configuration B Hurmphrey [2002], Ambrosi & Molica [2002], Himpel, Kuhl, Menzel & Steinmann [2006]

multiplicative decomposition

kinematics of growth

kinematics of growth

potato - kinematics of finite growtn concept of incompatible growth configuration

biclogically, the notion of incompatibility
implies that subelements of the grown configura-
tion may owverlap or have gaps. the implication of
incompatibility is the existence of residual stresses necessary
0 ‘squeeze these gown subslements back together.
mathematically, the notion of incompatibility implies that

unlike the deformation gradient, F = ¢ the growth ten-
0x ¢ fixed

sor cannot be derved as a gradient of a vector field.
; ; ; incompatible configurations are useful in finite strain inelasticity
[}

incompatiole growth configuration 3 g & growth tensor F g such as viscoelasticity, thermoelasticity, elastoplasticity and

F=F.F, growth,
rodriguez, hoger & mc culloch [1994]

kinematics of growth 35 kinematics of growth 3



potato - kinematics of fintte growth

gowth  J, > 1 Fg\
resorption J, < 1

* changes in volume - determinant of growth tensor J,

dv, = J,dV, Jp = det(Fy)
kinematics of growth a7
kinematics of cardiac growth @_
deformation
e(X,1) = £,5" er(t) Ni(X)

valid for all data points
n
= 3,2 ¢;(t) Ni(X))
with coordinates
X = [-xC’ X1, -xr]t

R system for 12 markers
X()3x12) = €(D3x91 - Njox12]

pseudo inverse to determine coefficients

c(D3x9) = X(H3x12] ‘N[[12x9] - [ Niox12] 'N[[12><9] I

example - growth of the heart 39

Kinemetics of cardiac growth @_

surgically implantation of 4x3 beads
across the left ventricular wall

4d coordiantes from in vivo biplane
videofluoroscopic marker images

tsamis, cheng, nguyen, langer, miller, kuhl [2012]

example - growth of the heart 38

Kinemetics of cardiac growth @_

3

deformation

e(X,1) = 3,5 e1(t) Ni(X)
deformation gradient

FX.1 =35 e/() ® VNi(X)
spatial gradient

V(o) = [8.(0), 8i(0), 3,(o)]"
volume changes

J(X,1) = det(F(X,1))

fiber stretch

"R (X, D) = [f(X) - F(X,0) - F(X, 1) f(X)]'?
‘ |

example - growth of the heart 40



kinematics of cardiac growth @
epi mid endo
20% depth p 50% depth  p 80% depth p
Fe. 1.00£0.12  0.96 1.03£0.14  0.46 1.02+£0.10 0.4
FS 0.04+0.14 042 | 001£0.10 077 | 0.01+0.09 0.6

F%R -0.07+£0.29 046 | -0.03+0.16 0.61 0.05+0.14 0.29
-0.02£0.17 0.75 | -0.04£0.13 0.33 | -0.04+£0.11 0.24

1.10+£0.15 0.06 1.10+£0.13  0.03 1.11+£0.11 0.01
F‘ER 0.02+0.16 0.71 0.10£0.20 0.11 0.18+0.34 0.12

Fre || —0.01£0.09 0.64 | -0.03+0.17 054 | -0.05£0.19 041

Fa 0.00£0.05 0.86 | -0.00£0.09 096 | -0.01x0.11 0.67

Foa 0.68+0.15 0.00 | 0.73+0.15 0.0 | 0.77+0.22 0.1
| )& ][ 074£0.19 0.00 | 0.82+0.19 001 | 0.89+0.21 0.10 ]
[ A& [ 103:0.12 049 | 1.04x0.16 036 | 1.08+0.11 004 |

example - growth of the heart #

Kinemetics of cardiac growth @_

* longitudinal growth by maore than 10%
« radial thinning by more than 20%

« fioer lengthening by more than 5%

« volume decrease by more than 156%

epi mid endo

20% depth p 50% depth p 80% depth p
ES. 0.03+0.15 0.56 | 0.06+0.18 027 | 0.05+0.13 0.20
ES 0.12+0.17 0.04 | 0.12+0.15 0.03 | 0.13x0.12 0.00
ES, || —0.21x0.12 0.00 | —0.19+£0.09 0.00 | —0.10+0.15 0.05
ES, 0.01x0.15 0.79 | -0.01x0.09 0.63 | —0.01+0.06 0.46
ES 0.00+0.08 0.86 | 0.06+0.11 0.10 | 0.11x0.19 0.10
ES, || —0.04x0.17 051 | -0.03+0.11 039 | 0.00+0.10 0.88

[ EE ][ 0.03:0.13 042 [ 0.06+0.18 031 | 0.09+0.12 0.03 |

%

example - growth of the heart 4

kinematics of cardiac growth @
X ¥ deformation
e(X,1) = 3,5 e1(t) Ni(X)

areen lagrange strains
EX,n=3[F-F-1I]

fiber strain
Eee(X,0) = f(X) - E(X,1) - f(X)
relation of fiber strain to fiber stretch
Er = 1/2 [ /ng —1 ]

fiber stretch

(X, ) = [f(X)-F(X,0) - F(X, 1) f(X)]'?

example - growth of the heart a2

WEEK 8 - CARDIAC STRAINS

WEEK 1 - CARDIAC STRAINS
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