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tensor calculus

day date
tue jan |10
thu | jan |12

tue @ jan |17

thu @ jan |19
tue jan |24
thu jan |26
tue jan |31
thu | feb |02
tue feb |07
thu | feb |09
tue feb |14
thu | feb |16
tue | feb |21
thu | feb |23
tue feb |28
thu | mar |01

tue  mar |06
thu | mar |08
tue  mar |13
thu | mar |15

thu | mar |15

topic

motivation - everything grows!
basics maths - notation and tensors
basic kinematics - large deformation and growth
basic kinematics - large deformation and growth
guest lecture: class project
guest lecture: growing leaflets
basic balance equations - closed and open systems
basic constitutive equations - growing tumors
volume growth - finite elements for growth
volume growth - growing arteries
volume growth - growing skin
volume growth - growing hearts
basic constitutive equations - growing bones
density growth - finite elements for growth
density growth - growing bones

everything grows! - midterm summary

midterm

remodeling - remodeling arteries and tendons
class project - discussion, presentation, evaluation
class project - discussion, presentation, evaluation

written part of final projects due

homework I - first ideas of final project
due 01/19/12, 09:30am, 300-020

Late homework can be dropped off in a box in front of Durand 217. Please mark clearly
with date and time @drop off. We will take off 1/10 of points for each 24 hours late,
every 12pm after due date. This homework will count 10% towards your final grade.

problem 1 - writing an abstract

The publication “Perspectives on biological growth and remodeling” provides a state-of-
the-art overview on the mechanics of growth. Read the manuscript carefully. At this
point, don’t worry if you don’t understand all the theoretical details.

The abstract of the publication is pretty poor. Use the sample “How to construct a Nature
summary paragraph” to rewrite the abstract in your own words. You might not be able
to follow the guidelines exactly since this is a review paper without specific results, but
try to follow the Nature summary pattern as closely as you can.

nature

How to construct a Nature summary paragraph

One or two sentences providing a basic introduction to the field,
comprehensible to a scientist in any discipline.

Two to three sentences of more detailed background, hensibl

| During cell division, mitotic spindles are assembled by microtubule-

based motor proteins™, The bipolar organization of spindles is
essential for proper seg:regatmn of chromosomes, and requires plus-
directed h

to scientists in related disciplines.

One sentence clearly stating the general problem being addressed by
this particular study.

d-d ic motor proteins of the widely conserved
kinesin-5 (BimC) family’. Hypotheses for bipolar spindle formation
include the ‘push—pull mitotic muscle’ model, in which kinesin-5 and
opposing motor proteins act between overlapping microtubules™**.
However, the precise roles of kinesin-5 during this process are

k . Here we show that the vertebrate kinesin-5 Eg5 drives

One sentence summarizing the main result (with the words “here we
show” or their equivalent).

I_.

the sliding of microtubules depending on their relative orientation.
‘We found in controlled in vitro assays that Eg5 has the remarkable

bility of simull ly moving at ~20 nm s™ towards the plus-

Two or three sentences explaining what the main result reveals in direct
comparison to what was thought to be the case previously, or how the
main result adds to previous knowledge.

[One or two sentences to put the results into a more general context.

—

Two or three sentences to provide a broader perspective, readily
comprehensible to a scientist in any discipline, may be included in the
first paragraph if the editor considers that the accessibility of the paper
is significantly enhanced by their inclusion. Under these ci

the length of the paragraph can be up to 300 words. (This example is
190 words without the final section, and 250 words with it).

ends of each of the two mi bules it links. For “, llel
microtubules, this results in relative shdmg at ~40 nm s™, comparable
to spindle pole separation rates in vivo®. Fu.rthermore, we found
that Eg5 can tether mi bule plus-ends, suggesting an additi
microtubule-binding mode for Eg5. Our results demonstrate

how members of the kinesin-5 family are likely to function in
‘mitosis, pushing apart interpolar microtubules as well as recruiting
microtubules into bundles that are subsequently polarized by relative
sliding. We anticipate our assay to be a starting point for more
sophisticated in vitro models of mitotic spindles. For example, the
individual and combmed action of multiple mitotic -motors could be

tested, includi d-directed motors opposing Eg5 motility.
Funhermote, Eg5 inhibition is a major target of anti-cancer drug
and a well-defined and itative assay for motor

function will be relevant for such developments.
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problem 2 - identifying things that grow

The publication “Perspectives on biological growth and remodeling” provides several ex-
amples of biological growth and remodeling. Create a table, which contains three
columns: (i) Type of growth; (ii) Biological details; and (iii) Mechanical details. Create
entries for as many examples as you can find in this manuscript.

Example. (i) Type of growth: Dilation of the heart; (ii) Biological details: Volume over-
load induces dilation of the heart through lengthening of the heart muscle cells; (iii)
Mechanical details: Growth is anisotropic in the form of lengthening along the muscle
fiber direction.

me337 - homework 01 5

problem 4 - design your own project

Now, it’s time to design your own class project. At this point, you don’t have to commit
to a particular type of growth. This is more meant for you to brainstorm and think of
some form of mechanically driven growth that you are really excited about. We will
carefully read your ideas and give you feedback and literature hints. Describe

o the type of tissue (hard, soft)

o the type of growth (density, surface, volume)

o the level at which you would like to study growth (cellular, tissue, organ)

o the mechanical driving force for growth (strain, stretch, stress, pressure, shear, force)
o the type of adaptation (disease specific, treatment specific, training, ...)

o the way in which you want to study growth (review, analytical, computational, ...)

Write a short summary about what you would like to study, and, if you decide to do
this in a group, with whom you would like to work.

me337 - homework 01 7

problem 3 - imechanica

Although this publication has been published in 2011, it was written two years before.
The web based platform imechanica, http: /www.imechanica.org, is a much faster and
more interactive medium. Read the January journal club “Mechanics of Growth” and
the related comments.

Identify more recent examples of growth. Add them to your table. Not all of them are
biological, so you may leave out the second column for some examples.

- - recent posts |
iMechanica research | education | mechanician | opinion | software | industry
web of mechanics and

Incool Home » My blog

o Post a new blog Journal Club Theme of January 2012: Mechanics of Growth

me337 - homework 01 6

tensor calculus

tensor [ten.sor] the word tensor was introduced
in 1846 by william rowan hamilton. it was
used in its current meaning by woldemar
voigt in 1899. tensor calculus was deve-
loped around 1890 by gregorio ricci-curba-
stro under the title absolute differential
calculus. in the 20th century, the subject
came to be known as tensor analysis, and
achieved broader acceptance with the intro-
duction of einsteins's theory of general
relativity around 1915. tensors are used |,
also in other fields such as continuum e
mechanics. WipEDIA

—————————————————————————————————————————
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tensor calculus - repetition

e vector algebra
notation, euklidian vector space, scalar product, vector
oroduct, scalar triple product

e tensor algebra
notation, scalar products, dyadic product, invariants, trace,

determinant, inverse, spectral decomposition, sym-skew
decomposition, vol-dev decomposition, orthogonal tensor

¢ tensor analysis
dervatives, gradient, divergence, laplace operator, integral
transformations

———————————————————————————————————————————————————————————————————————————
tensor calculus 9

example - position vector / displacement vector
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vector algebra - notation

® cinstein's summation convention

U; = Z?:lAU Ij + bz = Ai]' xj + bi

e summation over any indices that appear twice in a term

A11 T + Alg To + A13 T3 + bl
Annzy + Aspze + Az + by
As1x1 + Asaze + Asszs + b

Uy
Uz
Uusg

tensor calculus 10

vector algebra - notation

e Kronecker sympool

s {1 for =
Y10 for i#j

U; = 57;j ’le
e permutation sympool

3

eijr= 4 —1 for {i,7,k} ... odd permutation

1 for  {i,j,k} .. even permutation
0 ... else

tensor calculus 12



vector algebra - euklidian vector space

e cuklidian vector space V?
a,f ER R ..
w,v €V? V3o

real numbers
linear vector space

V2 is defined through the following axioms

aut+v) = autav
(a+f)u = au+fu
(@f)u = a(fu)
® 7ero element and identity
Ou=20 lu=u

® linear independence of e, ez, es € V? if ay =y =az =0
s the only (trivial) solution to «; e; =0
———————————————————————————————————————————————————————————————————————————
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vector algebra - euklidian vector space

e cukidian vector space £2equipped with
euklidian norm

n: & -R

n(w) = ||u|| = Vu-u = [uf +uj +u]'/?

e representation of 3d vector u € &2

.. euklidian norm

U = U; € = Uy €1 + Uz ey + Uz e

WIth uy, ug, ug cOOrdinates (components) of u relative to
fhe basis e, ez, e3

u = [u17u27u3]t
———————————————————————————————————————————————————————————————————————————
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vector algebra - euklidian vector space

e cukidian vector space Vequipped with norm »-

n: V>R ... norm

tensor calculus 14

vector algebra - scalar product

e oUKlidian norm enables definition of scalar (inner) product
uU-v=a«o a€R
w-v = |lul||[v]| cosV
[ - || < [|ull[|v]|

e properties of scalar product
U -v=7v-u
(au+pv) - w=a(u -w)+ (v -w)
w-(au+pfv)=a(w-u)+F(w-v)

e positive definiteness w-u >0, w-u=0u=0

e orthogonality u-v=0 & ulw
—————————————————————————————————————————
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example - radial displacement

Radial Displacement [mm]
5:

u=x-X oy
20 /
u=u-r ; ; ‘ ‘ : ‘
0 02 0.4 0.6 0.8 1
Time

tensor calculus 17

Left Ventricular Pressure [mmHg]
3

vector algebra - scalar triple product
e scalar triple product

[u,v,w=u-(vxw)=a aceR

u X v = ||lul|||v]| sindn area
[u,v,w] =u-(vxw) Volume

o = uy (vVaws — v3wa) + up(v3wy — viws) + uz(viwy — V3w )
e properties of scalar triple product
[u,v,w] = [v,w,u| = [w,u, v
= —[u,w,v] = — [v,u,w] = — [w, v, u
* near independency  [u,v,w] #0

tensor calculus 19

vector algebra - vector product
e \ector product

3

uxv=w weé w o |[o|[sin®
u X v = ||ul|||v]| sindn i
uxv=0 & ul v u

wy Uz V3 — U3V2
W2 = | U3V — U1U3
w3 Uy V2 — U7y

e properties of vector product
UXV=—vXuU
(du+pfv)xw=a(uxw)+F(vxw)
u-(uxv)=0
(uxv) (uxv)=(u-u)(v-v)—(u-v)?

tensor calculus 18
g —
tensor algebra - second order tensors
o) -
e second order tensor T

A=u®v u=ue and v=v;e;
A A Agg

A=A e Re; [Aij] = | Aar Ax A ]
Azr Asy Asg

with Ag; = u; v; coordinates (components) of A relative to
the basis ei, ez, e3

e transpose of second order tensor
A'=(u®v)=vQu
A" = Aji €; X e; [Aji] = A12 A22 A32
A13 A23 A33

All A21 A31“

tensor calculus 20



tensor algebra - second order tensors

e second order unit tensor in terms of kronecker symbol
I = 5ij €; (03] 6]‘

with &g coordinates (components) of I relative to the
Dasis ei, e;, e3

e matrix representation of coordinates

1 0 0
Bil=10 1 0]

0O 0 1
e identity

I u=u 5ijei®ej-ujej=uie,~

tensor calculus 21

tensor algebra - third order tensors

e third order tensor
c3L:A®v A=A4A;e;®ejand v = v €
a— Qijk €; D €; & ey
with agx = Aij vk cOOrdinates (components) of Arelative
0 the basis ey, es, e3

e third order permutation tensor in terms of permutation
symbol &,

3
e=e¢jjre Qe e

tensor calculus 23

example - scaled identity tensor / pressure

Pert

LVP [mmHg]

0 1 . . L . . . L
0 500 1000 1500 2000 2500 3000 3500 4000

) IR | [T [
Time [ms] 1 3
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tensor algebra - fourth order tensors

e fourth order tensor
A=A®B
A:Aijklei®ej®ek®el

with A = Ai; B coordinates (components) of A
relative 1o the basis ey, es, e3

A=Ajje;®ejand B=Bye,® e

e fourth order unit tensor
l=dpdie,®e e, ®e
e transpose of fourth order unit tensor
I'= didjre ®e; D ep® e
———————————————————————————————————————————————————————————————————————————
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tensor algebra - fourth order tensors

e symmetric fourth order unit tensor

I = % [5zk 6jl + i 5jk] e ® €; XerRe M. A = AT
e screw-symmetric fourth order unit tensor

sk — % [5119 5jl — i 5jk] e,Re Ve e Iskv . A = Askw
e \volumetric fourth order unit tensor

Ivol — %&J 5kl e; ® ej ® e ® e lvol . A — Avol
e deviatoric fourth order unit tensor Jdev . A = AdeY

19 = [ 16, 0u+ 2 0u 0+ S 0udu]e e @er @ e

tensor calculus 25

tensor algebra - scalar product

e scdlar (inner) product

A-B (Aijei®e;): (Buer®e)
Aij By dire; @ e
AijBje,®e =Che;@e =C

of two second order tensors A and B

e 7ero and identity 0-A=A I- A=A

e properties of scalar product
a(A-B)=(aA)-B=A-(aB)
A.(B+C)=A-B+A.-C
(A+B)-C=A-C+B-C

(A-B)' = B'- A'

tensor calculus 27

tensor algelra - scalar product

e scdlar (inner) product

A-u = (Aijei ® Ej) . (Uk ek)
= Ai]‘ Ul 6jk €, — Aij Uj e, =v;e =7

of second order tensor A and vector u
e zero and identity 0-u=0 I u=u
e positive definiteness a-A-a >0

e properties of scalar product
A-(aa+Bb)=a(A-a)+B(A-b)
(A+B)-a=A-a+B-a
(dA)-a=a(A-a)

tensor calculus 2

tensor algelra - scalar product

e scdlar (inner) product

A:B (Aij e ® ej) : (Bkl e, ® el)
Aij By 0ir, 051 = Aij Bij = «
of two second order tensors A, B

e scdlar (inner) product

A:B (Aijriei®e; @e,®e): (Buyen,®e,)
Aijlcl an 5km 6ln €; ® ej
= AjjuBue, ®ej = Ajje;®e; = A

of fourth order tensors A and second order tensor B
e 7ero and identity 0:A=0 1:A=A

L
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tensor algelra - dyadic product

e dyadic (outer) product
A=u®v=uiei®vjej :uivjei@)ej :Aijei®ej
of two vectors w, v introduces second order tensor A

* properties of dyadic product (tensor notation)
(u®v) w=(v-w)u
(du+frv)ow=a(u®w)+[(vew)
uR v+ fw)=a(u®v)+[(uew)
(u®v) (weex)=(v w)(u®x)

A (uv)=(A-u)®v
(u®v) - A=u® (A" v)

tensor calculus 20

tensor algebra - invariants

e (principal) invariants of second order tensor

IA = tr (A)
Iy = 1 [tr?(A) - tr (A?)]
I, = det(A)

e Jderivatives of invariants wrt second order tensor

8A IA = I
Oa Ily, = I1,I1-A
O Iy = T4 A"

tensor calculus 3

tensor algelra - dyadic product

e dyadic (outer) product
A=u®v=uiei®vjej :uivjei@)ej :Aijei®ej
of two vectors u, v infroduces second order tensor A

e properties of dyadic product (index notation)
(i v;) wy = (v wy) u;
(au; + Bv)w; = a (u;wy) + B (v wy)
ui(avj + fw;) = a(u;v;) + 5 (w w;)
(ui ) (wj 2k) = (vj wy) (wizn)
Al] (UJ Uk) (AU uz)Uk
(i vj) Aji, = ui( Agj vy)

tensor calculus )

tensor algelora - trace

e trace of second order tensor
tr(A) tI'(AU e X e])

Ai]‘ tr(ei (039 6]‘) = Aij €; - ej

Ajj 0y = Ay = A + Agp + Ass

tr(u®ov)=u-v

1

e properties of traces of second order tensors
tr (I)=3
tr (A1) = tr (A)
tr(A-B)=tr(B-A)
(aA—FﬂB) = atr(A) + ftr(B)
tr(A-B)=A:B
tr(A)=tr(A-I)=A:1
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tensor algebra - determinant

® determinant of second order tensor I, = det(A)

det(A) det(AZ-j) = % 6ijk Cabe Am Ajb Akc
A1 AgpAss + Aoy AgpArs + Az Ajg Aog
— A1 AszAsy — A Az Ay — Asz Ao As

e properties of determinants of second order tensors

det (I) =1

det (A") = det (A)

det (o A) = a?det(A)

det (A-B) = det(A) det(B)
det(u ® v) =

tensor calculus 33

tensor algebra - inverse

e inverse of second order tensor
A-A7'=A"A=1 npafclarv=4A-u A v=u

e adjoint and cofactor
A" = det(A) A7 A = det(A) AT = (A1)
Oadet(A) = det(A) A~ = II[, A" = A*f

e properties of inverse det(A™") = 1/det(A)
(A7)t = 4
(aA™H)™ = alA
(A-B)! = Bl.A"!

tensor calculus 35

tensor algebra - determinant

e determinant defining vector product

u X v = det

e Jeterminant defining scalar triple product

[u,v,w] = (u X v) - w = det |: Uy Vg

|

u v e U2V3
Uy V2 €2 = | U3z
Uz V3 €3 U1v2

uy v

uz U3

— U3v2
— U1v3

— U

w1y
W
w3

—————————————————————————————————————————
tensor calculus

eigenvalue problem - maximum principal value

100

s a 4

LVP [mmHg]

)

0
0 500 1000 1500
Time [ms]

k2 —Ipk+ 1l =0

2000

2500

mes I | I
Ip = tr(B)=Ba/3g“B=K1+K2 QJD
IIp := det(B) = det(Byg)/det(gup) = K1k2
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tensor algebra - spectral decomposttion

e cigenvalue problem of second order tensor
A-nA:)\AnA [A—)\AI]-TLA:O

® solution det (A — X4 I) = 0 In terms of scalar triple product
[A-u—Mu, A-v— v, A -w—\w| =0

* characteristic equation I = tr(A)
No—=Ia N+ Iada — Iy =0  [I, = L[tr? (A) - tr (A2)]
I, = det(A)

e spectral decomposition
A=30 Ming @ny,
e cayleigh hamilton theorem
AP —TNA* + I, A—1II,T=0

tensor calculus

tensor algebra - symmetric tensor

e symmetric second order tensor
Asym — %[A + At] Asym —_ (Asym)t Asym —_ S

® processes three real eigenvalues and corresp.eigenvectors

, Is = Asi+ As2+ Asz
S=>" Asi(ngi®@mng) s = Xs2Ass+ AgzAs1 + As1 Ag2
HIs = AgiAs2As3

® square root, inverse, exponent and log

VS = 25’:1 VAsi (g @ ng;)
s = Asb (ng ®ng;)
exp (S) = Z?:l exp ()\Sz) (’I’LSi ® TI,SZ')
m(S) = 37, (s (ns®ns)
tensor calculus 39

tensor algebra - sym/skw decomposition

e symmetric - skew-symmetric decomposition
A=1A+A+1[A- A=A+ AN
e symmetric and skew-symmetric tensor
Asym — (Asym)t Askw — _(Askw)t
® symmetric tensor
A =1A4+ A= A

e skew-symmetric tensor
Askw _ %[A_At] — Iskw A

tensor calculus 3

tensor algebra - skew-symmetric tensor

e skew-symmetric second order tensor
Askw — %[A _ At] Askw — _(Askw)t Askw =W

e processes three independent entries defining axial vector
w:—%gzw w=—é-w SUchthat W-v=wxwv

¢ invariants of skew-symmetric tensor

Iy = w-w
oy = det(W) = 0

tensor calculus a0



tensor algebra - vol/dev decomposition

e \volumetric - deviatoric decomposition
A — Avol 4 Adev

e volumetric and deviatoric tensor
tr(A™) = tr(A) tr(A%) =0

¢ \olumetric tensor
A =LA QI=1":A

e Jeviatoric tensor
A =A-LA:III=1":A

tensor calculus a

tensor analysis - frechet denvative

e consider smooth differentiable scalar field @ with

scalar argument @ - R =R D (z) =«
vector argument ¢ : R} = TR; b (x) =«
tensor argument @ : R3 x R?® — R; D (X)=«

e frechet derivative (tensor notation)
0PD(x)

scdear argument D@ (z) = 5 = 0,P (x)
vector argument D@ (x) = 892(33) = 0,9 (x)
fensor argument D@ (X)) = aiiX) =0x?(X)

tensor calculus a3

tensor algebra - orthogonal tensor

¢ orthogonal second order tensor @ € S0(3)
Q'=Q" & Q-Q=Q-Q~=1I
e decomposition of second order tensor
A=Q-U=V-Q
suchthat @a-U-a>0 and a-V-a>0

e proper orthogonal tensor @ € S0(3) has eigenvalue Ag =1

1 0 0
Q- ng=ng with [Qyl=]0 +cosp +sing
0 —singp +cose

Interpretation: finite rotation around axis nqg

tensor calculus a2

tensor analysis - gateaux dernvative

e consider smooth differentiable scalar field @ with

scalar argument ¢ - R —R; D (z) =«
vector argument @ - R =R, b (x) =«
R3 x R? = R; P(X)=a

tensor argument @ :
e gateaux derivative,i.e. frechet wit direction (tensor notation)

scalar argument D@ (z) u = —eé (x+€u) =0 Yu eR

vector argumeni D@ (x) - u :_E@ (x+eu)|—o VuecR?

fensor argUmentD @(X): U =— (X +eU)|y YUE R} @ R?
€

8
2| ol o A
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tensor analysis - gradient

e consider scalar- and vector field in domain B e R3

f:B—>TR frx—f (@)
f:B—R? frz—f ()
e gradient of scalar- and vector field _
of (x) Ja
V(@)= "5 = fi@) e, Vi@ =| fa
' BE
of; [ f1,1 f1,2 f1,3
Vf(x)= J;JECE) = fij(x) e;@e; V()= for fo2 [fo3 ]
! | fsn f32 [f33

renders vector- and 2nd order tensor field

tensor calculus a5

tensor analysis - divergence

e consider vector- and 2nd order tensor field in domain B
f: B=TR3 fiz—f (x
F:B—-R@R? F:x— F (x)
e divergence of vector- and 2nd order tensor field
div(f (z)) = tx(Vf(z)) =Vf(z): I
div(f (x)) = fii(®) = fin + faz + f33

div(F (z)) =tr(VF (x)) =VF () : I

Fii1+Fiao+ Fiss
Fo11 + Faop + Foz3
Fs1 1+ Fy0 + F333

renders scalar- and vector field

div(F (x)) = Fj(x) =

tensor calculus a7

example - displacement gradient / strain

Strain [%]

- VAN VNSNSV

S

8

Iy
S

00

sure (mmHg]

e=Vu (x)
g, =1t€t

Left Ventricular Pres:
o B8 8
-
’
g
:
e
:
2
:
s
ki
2
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tensor analysis - laplace operator

e consider scalar- and vector field in domain B e R3

f: B—=TR frx—f (o
f: B—R3 fix—f (o)

® laplace operator acting on scalar- and vector field

Af(x) =div(V(f(2)) Af(z)=fi=fu+ fat f33

‘ fiar + fioe + fiss
Af (x) = div(V(f (z))) Af(x) = fiji= | fauu + fo2 + fo33
f311 + fa22 + f333

renders scalar- and vector field

tensor calculus a8



tensor analysis - transformation formulae

e consider scalar,vector and 2nd order tensor field on B € R3

a: B—-TR a: r—a (x)
u: B—TR? u: z—u ()
v: B—TR? v: T—v ()
A: B->R@R? A:x— A ()

e Useful transformation formulae (tensor notation)

V (au) = v®Va + aVu
Vuwv) = uw-Vvo + v-Vu
div (au) = adv(u) + u-Va
div (¢ A) = adiv(A) + A -Va
div (u-A) = u-div(A) + A:Vu
div(u®v) = wdiv(v) + v-Vu'

tensor calculus a0

tensor analysis - integral theorems

e consider scalar,vector and 2nd order tensor field on B € R3

a: B—-TR a: x—a (x)
u: B—R? u: T —u (o)
A:B—-R@R3 A:z— A (o)

e integral theorems (tensor notation)

" fpspan dA=[; VadV green
0B fopu-n dA = [ div(w)dV  gauss
Jog A-m dA = [ div(A)dV gauss

B
eX€ERB
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tensor analysis - transformation formulae

e consider scalar,vector and 2nd order tensor field on B € R3

a: B—-TR a: rp—a  (Tg)

u: B—TR3 wi: rp—u; (zk)

v;: B—TR3 vi: rp— v (zk)

Aij: B> R*@R? Aij o wp — Ay (1)
)

e Useful transformation formulae (index notation
(awu ), Uy + U

( U; V; )7]‘ = U Uivj + V; uiJ'

( a U ),i = CK'LLZ‘,Z' + U; Oéﬂ'

(adAij); = adiy; + Ajja,

(ui Aij )y = wi Aijy + Aij i

(wivj); = wivig + vjuiy
———————————————————————————————————————————————————————————————————————————
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tensor analysis - integral theorems

e consider scalar,vector and 2nd order tensor field on B € R3

a: B—-TR a: xp—a (1)
u: B—R3 uis =y (k)

e integral theorems (tensor notation)

B ! Jop amni dA = [z a;dV green
eXchB 9B Jog win; dA = [z w;; dV gauss

faB Aij n; dA = fB Aij,jdV gauss
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Voigt / matrix vector notation

e strain tensors as vectors in voigt notation
Ell E12 E31
E12 E22 E23
) E31 E23 E33
EVOlgt = [E117 E22; E337 2 E12, 2 E237 2 ESl]t
® Stress tensors as vectors in voigt notation
Sll 512 531
Sz'j = | Si2 Sy Sa
S31 523 S33
SYO8 = [S11, S22, Ss3, Si2, S23, Sa1'

* Why are strain & stress different”? check energy expression!
Y = %E : S P = %EVOigt . gvoigt
————————————————————————————————————————————————————————
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Eij =

Voigt / matrix vector notation

e fourth order material operators as matrix in voigt notation

C'1111 Cll22 C(1133 C'1112 C11123 C(1131

Coonr Cazza Cazzz Carz Coozy Cozs
cvost — | Casi Cuszz Caszy Caziz Cazas Ciss
Cia11 Cizoz Chazz Chraiz Chazs Chas

02311 02322 02333 02312 02323 02331
Csi1 Csi22 Caizz Csiiz Ciiaz Cssan

e \Why are strain & stress different”? check these expressions!

S = C - E Svoigt _ Cvoigt . Evoigt
—————————————————————————————————————————
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