02 - basics and maths notation and tensors

02 - tensor calculus

homework I - first ideas of final project

due 01/19/12, 09:30am, 300-020

Late homework can be dropped off in a box in front of Durand 217. Please mark clearly with date and time @drop off. We will take off $1 / 10$ of points for each 24 hours late, every 12 pm after due date. This homework will count 10% towards your final grade.

problem 1 - writing an abstract

The publication "Perspectives on biological growth and remodeling" provides a state-of-the-art overview on the mechanics of growth. Read the manuscript carefully. At this point, don't worry if you don't understand all the theoretical details.

The abstract of the publication is pretty poor. Use the sample "How to construct a Nature summary paragraph" to rewrite the abstract in your own words. You might not be able to follow the guidelines exactly since this is a review paper without specific results, but try to follow the Nature summary pattern as closely as you can.

day	date		topic	
tue	jan	10	motivation - everything grows!	
thu	jan	12	basics maths - notation and tensors	
tue	jan	17	basic kinematics - large deformation and growth	
thu	jan	19	basic kinematics - large deformation and growth	
tue	jan	24	guest lecture: class project	
thu	jan	26	guest lecture: growing leaflets	
tue	jan	31	basic balance equations - closed and open systems	
thu	feb	02	basic constitutive equations - growing tumors	
tue	feb	07	volume growth - finite elements for growth	
thu	feb	09	volume growth - growing arteries	
tue	feb	14	volume growth - growing skin	
thu	feb	16	volume growth - growing hearts	
tue	feb	21	basic constitutive equations - growing bones	
thu	feb	23	density growth - finite elements for growth	
tue	feb	28	density growth - growing bones	
thu	mar	01	everything grows! - midterm summary	
tue	mar	06	midterm	
thu	mar	08	remodeling - remodeling arteries and tendons	
tue	mar	13	class project - discussion, presentation, evaluation	
thu	mar	15	class project - discussion, presentation, evaluation	
thu	mar	15	written part of final projects due	
me337 - syl\|abus				2

nature

How to construct a Nature summary paragraph \begin{tabular}{|l|}
\hline $\begin{array}{l}\text { One or two sentences providing a a asic introduction to the field, } \\
\text { comprehensible to a scientist in any discipline. }\end{array} \quad$ During cell division, mitotic spindles are assembled by microtubule-

comprehensible to a scientist in any discipline.

$\begin{array}{l}\text { Two to three sentences of more detailed background, comprehensible } \\
\text { to scientists in related disciplines. }\end{array}$

\hline
\end{tabular}

One sentence clearly stating the general problem being addressed by
this particular study.
One sentence summarizing the main result (with the words "here we show" or their equivalent)
Two or three sentences cxplaining what the main result revecals in dircect comparison to what was thought to be the case previously, or how the main result adds to previous knowledge. One or two sentences to put the results into a more general context.

\qquad first paragraph if the editor considers that the accessibility of the paper is significantly enhanced by their inclusion. Under these circumstances the length of the paragraph can be up to 300 words. (This example is
100 words without the final section and 250 words with it) assed motor proteins ${ }^{12}$. The bipolar organization of spindles is essential for proper segregation of chromosomes, and requires plus-
end-directed homotetrameric motor proteins of the widely conserved kinesin-5 (BimC) family ${ }^{3}$. Hypotheses for bipolar spindle formation include the 'push-pull mitotic muscle' model, in which kinesin- 5 and
opposing motor proteins act between overlapping microtubulesest. opposing motor proteins act between overlapping microtuubles ${ }^{2}$
Howeever, the precise roles of kinesin- 5 during this process are unknown. Here we show that the vertebrate kinesin- 5 E 5 d dives the sliding of microtubules depending on their relative orientation.
We found in controlled in vitro assays that $E g 5$ has the remarkable We found in controlled in vitro assays that Eg5 5 has the remarkable
capability of simultaneously moving at $-20 \mathrm{~nm}^{-1}$ stowards the plusends of each of the two microtubules it crosslinks. For anti-parallel microtubules, this results in relative sliding at $\sim 40 \mathrm{~nm} \mathrm{~s}^{-1}$, comparable
to spindle pole separation rates in vivo. Furthermore, we found to spindele pole separation rates in vivo. Furthermore, we found
that Egs can tether microtubule plus-ends, suggesting an additional microtubule-binding mode for Eg5. Our results demonstrate
how members of the kinesin-5 family are likely to function in mitosis, pushing apart interpolar microtubules as well as recruiting
microtubules into bundles that are subsequently polarized by relative microtubules into eunces that are subsequently polarizect by re
sliding. We anticipate our assay to be a starting point for more sophisticated in vitro modeds of mitotic spindles. For example, individual and combined action of multiple mitotic motors could be
nested including minus-end-directed motors opposing Eg 5 motility tested, including minus-end-directed motors opposing Eg5 motility.
Furthermore, Eg5 inhibition is a major target of anti-cancer drug arruhermore, ,g5 inhibition is a major target of anti-cancer drug
develoment, and a well-deifined and quantitative assay for motor function will be relevant for such developments.

problem 2 - identifying things that grow

The publication "Perspectives on biological growth and remodeling" provides several examples of biological growth and remodeling. Create a table, which contains three columns: (i) Type of growth; (ii) Biological details; and (iii) Mechanical details. Create entries for as many examples as you can find in this manuscript.

Example. (i) Type of growth: Dilation of the heart; (ii) Biological details: Volume overload induces dilation of the heart through lengthening of the heart muscle cells; (iii) Mechanical details: Growth is anisotropic in the form of lengthening along the muscle fiber direction.

$$
\text { me337 - homework } 01
$$

problem 4-design your own project

Now, it's time to design your own class project. At this point, you don't have to commit to a particular type of growth. This is more meant for you to brainstorm and think of some form of mechanically driven growth that you are really excited about. We will carefully read your ideas and give you feedback and literature hints. Describe

- the type of tissue (hard, soft)
- the type of growth (density, surface, volume)
- the level at which you would like to study growth (cellular, tissue, organ)
- the mechanical driving force for growth (strain, stretch, stress, pressure, shear, force) - the type of adaptation (disease specific, treatment specific, training, ...)
- the way in which you want to study growth (review, analytical, computational, ...)

Write a short summary about what you would like to study, and, if you decide to do this in a group, with whom you would like to work.

problem 3 - imechanica

Although this publication has been published in 2011, it was written two years before. The web based platform imechanica, http://www.imechanica.org, is a much faster and more interactive medium. Read the January journal club "Mechanics of Growth" and the related comments.

Identify more recent examples of growth. Add them to your table. Not all of them are biological, so you may leave out the second column for some examples.

tensor calculus

tensor ['ten.sor]the word tensor was introduced in 1846 by william rowan hamilton. it was used in its current meaning by woldemar voigt in 1899. tensor calculus was developed around 1890 by gregorio ricci-curbastro under the title absolute differential calculus. in the 20th century, the subject came to be known as tensor analysis, and achieved broader acceptance with the introduction of einsteins's theory of general relativity around 1915. tensors are used also in other fields such as continuum mechanics.

tensor calculus - repetition

- vector algebra

notation, euklidian vector space, scalar product, vector product, scalar triple product

- tensor algebra

notation, scalar products, dyadic product, invariants, trace, determinant, inverse, spectral decomposition, sym-skew decomposition, vol-dev decomposition, orthogonal tensor

- tensor analysis

derivatives, gradient, divergence, laplace operator, integral transformations

vector algebra - notation

- kronecker symbol

$$
\begin{gathered}
\delta_{i j}=\left\{\begin{array}{lll}
1 & \text { for } & i=j \\
0 & \text { for } & i \neq j
\end{array}\right. \\
u_{i}=\delta_{i j} u_{j}
\end{gathered}
$$

- permutation symbol

$$
\stackrel{3}{e}_{i j k}=\left\{\begin{array}{rlll}
1 & \text { for } & \{i, j, k\} & \ldots \text { even permutation } \\
-1 & \text { for } & \{i, j, k\} & \ldots \text { odd permutation } \\
0 & & & \ldots \text { else }
\end{array}\right.
$$

vector algebra - euklidian vector space

- euklidian vector space \mathcal{V}^{3}

$\alpha, \beta \in \mathcal{R}$	\mathcal{R}	\ldots	real numbers	
$\boldsymbol{u}, \boldsymbol{v}$	$\in \mathcal{V}^{3}$	\mathcal{V}^{3}	\ldots	linear vector space

- \mathcal{V}^{3} is defined through the following axioms

$$
\begin{aligned}
\alpha(\boldsymbol{u}+\boldsymbol{v}) & =\alpha \boldsymbol{u}+\alpha \boldsymbol{v} \\
(\alpha+\beta) \boldsymbol{u} & =\alpha \boldsymbol{u}+\beta \boldsymbol{u} \\
(\alpha \beta) \boldsymbol{u} & =\alpha(\beta \boldsymbol{u})
\end{aligned}
$$

- zero element and identity

$$
0 \boldsymbol{u}=\mathbf{0} \quad 1 \boldsymbol{u}=\boldsymbol{u}
$$

- linear independence of $\boldsymbol{e}_{1}, \boldsymbol{e}_{2}, \boldsymbol{e}_{3} \in \mathcal{V}^{3}$ if $\alpha_{1}=\alpha_{2}=\alpha_{3}=0$ is the only (trivial) solution to $\alpha_{i} \boldsymbol{e}_{i}=0$

vector algebra - euklidian vector space

- euklidian vector space \mathcal{E}^{3} equipped with euklidian norm

$$
\begin{aligned}
& n: \mathcal{E}^{3} \rightarrow \mathcal{R} \quad \ldots \text { euklidian norm } \\
& n(\boldsymbol{u})=\|\boldsymbol{u}\|=\sqrt{\boldsymbol{u} \cdot \boldsymbol{u}}=\left[u_{1}^{2}+u_{2}^{2}+u_{3}^{2}\right]^{1 / 2}
\end{aligned}
$$

- representation of 3 d vector $\boldsymbol{u} \in \mathcal{E}^{3}$

$$
\boldsymbol{u}=u_{i} \boldsymbol{e}_{i}=u_{1} \boldsymbol{e}_{1}+u_{2} \boldsymbol{e}_{2}+u_{3} \boldsymbol{e}_{3}
$$

with u_{1}, u_{2}, u_{3} coordinates (components) of \boldsymbol{u} relative to the basis $\boldsymbol{e}_{1}, \boldsymbol{e}_{2}, \boldsymbol{e}_{3}$

$$
\boldsymbol{u}=\left[u_{1}, u_{2}, u_{3}\right]^{\mathrm{t}}
$$

vector algebra - euklidian vector space

- euklidian vector space \mathcal{V}^{3} equipped with norm

$$
n: \mathcal{V}^{3} \rightarrow \mathcal{R}
$$

... norm

- norm defined through the following axioms

$$
\begin{aligned}
& n(\boldsymbol{u}) \geq 0 \quad n(\boldsymbol{u})=0 \Leftrightarrow \boldsymbol{u}=\mathbf{0} \\
& n(\alpha \boldsymbol{u})=|\alpha| n(\boldsymbol{u}) \\
& n(\boldsymbol{u}+\boldsymbol{v}) \leq n(\boldsymbol{u})+n(\boldsymbol{v}) \\
& n^{2}(\boldsymbol{u}+\boldsymbol{v})+n^{2}(\boldsymbol{u}-\boldsymbol{v})=2\left[n^{2}(\boldsymbol{u})+n^{2}(\boldsymbol{v})\right]
\end{aligned}
$$

tensor calculus

vector algebra - scalar product

- euklidian norm enables definition of scalar (inner) product

$$
\begin{gathered}
\boldsymbol{u} \cdot \boldsymbol{v}=\alpha \quad \alpha \in \mathcal{R} \\
\boldsymbol{u} \cdot \boldsymbol{v}=\|\boldsymbol{u}\|\|\boldsymbol{v}\| \cos \vartheta \\
\|\boldsymbol{u} \cdot \boldsymbol{v}\| \leq\|\boldsymbol{u}\|\|\boldsymbol{v}\|
\end{gathered}
$$

- properties of scalar product

$$
\boldsymbol{u} \cdot \boldsymbol{v}=\boldsymbol{v} \cdot \boldsymbol{u}
$$

- positive definiteness
$\boldsymbol{u} \cdot \boldsymbol{u} \geq 0, \quad \boldsymbol{u} \cdot \boldsymbol{u}=0 \Leftrightarrow \boldsymbol{u}=\mathbf{0}$
$\boldsymbol{u} \cdot \boldsymbol{v}=0 \quad \Leftrightarrow \quad \boldsymbol{u} \perp \boldsymbol{v}$
- orthogonality
example - radial displacement

vector algebra - vector product

- vector product

$$
\left.\begin{array}{rl}
\boldsymbol{u} \times \boldsymbol{v} & =\boldsymbol{w} \quad \boldsymbol{w} \in \mathcal{E}^{3} \\
\boldsymbol{u} \times \boldsymbol{v} & =\|\boldsymbol{u}\|\|\boldsymbol{v}\| \sin \vartheta \boldsymbol{n} \\
\boldsymbol{u} \times \boldsymbol{v} & =\mathbf{0} \quad \Leftrightarrow \quad \boldsymbol{u} \| \boldsymbol{v} \\
{\left[\begin{array}{c}
w_{1} \\
w_{2} \\
w_{3}
\end{array}\right]} & =\left[\begin{array}{lll}
u_{2} v_{3} & - & u_{3} v_{2} \\
u_{3} v_{1} & - & u_{1} v_{3} \\
u_{1} & v_{2} & -
\end{array} u_{2} v_{1}\right.
\end{array}\right] .
$$

- properties of vector product

$$
\boldsymbol{u} \times \boldsymbol{v}=-\boldsymbol{v} \times \boldsymbol{u}
$$

$$
(\alpha \boldsymbol{u}+\beta \boldsymbol{v}) \times \boldsymbol{w}=\alpha(\boldsymbol{u} \times \boldsymbol{w})+\beta(\boldsymbol{v} \times \boldsymbol{w})
$$

$$
\boldsymbol{u} \cdot(\boldsymbol{u} \times \boldsymbol{v})=0
$$

$$
(\boldsymbol{u} \times \boldsymbol{v}) \cdot(\boldsymbol{u} \times \boldsymbol{v})=(\boldsymbol{u} \cdot \boldsymbol{u})(\boldsymbol{v} \cdot \boldsymbol{v})-(\boldsymbol{u} \cdot \boldsymbol{v})^{2}
$$

vector algebra - scalar triple product

- scalar triple product
$[\boldsymbol{u}, \boldsymbol{v}, \boldsymbol{w}]=\boldsymbol{u} \cdot(\boldsymbol{v} \times \boldsymbol{w})=\alpha \quad \alpha \in \mathcal{R}$
$\boldsymbol{u} \times \boldsymbol{v}=\|\boldsymbol{u}\|\|\boldsymbol{v}\| \sin \vartheta \boldsymbol{n}$ area
$[\boldsymbol{u}, \boldsymbol{v}, \boldsymbol{w}]=\boldsymbol{u} \cdot(\boldsymbol{v} \times \boldsymbol{w}) \quad$ volume

$\alpha=u_{1}\left(v_{2} w_{3}-v_{3} w_{2}\right)+u_{2}\left(v_{3} w_{1}-v_{1} w_{3}\right)+u_{3}\left(v_{1} w_{2}-v_{3} w_{1}\right)$
- properties of scalar triple product
$[\boldsymbol{u}, \boldsymbol{v}, \boldsymbol{w}]=[\boldsymbol{v}, \boldsymbol{w}, \boldsymbol{u}]=[\boldsymbol{w}, \boldsymbol{u}, \boldsymbol{v}]$ $=-[\boldsymbol{u}, \boldsymbol{w}, \boldsymbol{v}]=-[\boldsymbol{v}, \boldsymbol{u}, \boldsymbol{w}]=-[\boldsymbol{w}, \boldsymbol{v}, \boldsymbol{u}]$
$[\alpha \boldsymbol{u}+\beta \boldsymbol{v}, \boldsymbol{w}, \boldsymbol{d}]=\alpha[\boldsymbol{u}, \boldsymbol{w}, \boldsymbol{d}]+\beta[\boldsymbol{v}, \boldsymbol{w}, \boldsymbol{d}]$
- linear independency $[\boldsymbol{u}, \boldsymbol{v}, \boldsymbol{w}] \neq 0$
tensor algebra - second order tensors
- second order unit tensor in terms of kronecker symbol

$$
\boldsymbol{I}=\delta_{i j} \boldsymbol{e}_{i} \otimes \boldsymbol{e}_{j}
$$

with $\delta_{i j}$ coordinates (components) of \boldsymbol{I} relative to the
basis $\boldsymbol{e}_{1}, \boldsymbol{e}_{2}, \boldsymbol{e}_{3}$

- matrix representation of coordinates

$$
\left[\delta_{j i}\right]=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

identity

$$
\boldsymbol{I} \cdot \boldsymbol{u}=\boldsymbol{u} \quad \delta_{i j} \boldsymbol{e}_{i} \otimes \boldsymbol{e}_{j} \cdot u_{j} \boldsymbol{e}_{j}=u_{i} \boldsymbol{e}_{i}
$$

tensor algebra - third order tensors

- third order tensor

$$
\begin{array}{ll}
\stackrel{3}{\boldsymbol{a}}=\boldsymbol{A} \otimes \boldsymbol{v} \\
\stackrel{3}{\boldsymbol{a}}=a_{i j k} \boldsymbol{e}_{i} \otimes \boldsymbol{e}_{j} \otimes \boldsymbol{e}_{k} & \boldsymbol{A}=A_{i j} \boldsymbol{e}_{i} \otimes \boldsymbol{e}_{j} \text { and } \boldsymbol{v}=v_{k} \boldsymbol{e}_{k} \\
\hline
\end{array}
$$

with $a_{i j k}=A_{i j} v_{k}$ coordinates (components) of \boldsymbol{A} relative
to the basis $\boldsymbol{e}_{1}, \boldsymbol{e}_{2}, \boldsymbol{e}_{3}$

- third order permutation tensor in terms of permutation symbol $\stackrel{3}{e}_{i j k}$
example - scaled identity tensor / pressure

tensor algebra - fourth order tensors
- fourth order tensor

$$
\begin{aligned}
& \mathbf{A}=\boldsymbol{A} \otimes \boldsymbol{B} \quad \boldsymbol{A}=A_{i j} \boldsymbol{e}_{i} \otimes \boldsymbol{e}_{j} \text { and } \boldsymbol{B}=B_{k l} \boldsymbol{e}_{k} \otimes \boldsymbol{e}_{l} \\
& \mathbf{A}=A_{i j k l} \boldsymbol{e}_{i} \otimes \boldsymbol{e}_{j} \otimes \boldsymbol{e}_{k} \otimes \boldsymbol{e}_{l}
\end{aligned}
$$

with $A_{i j k l}=A_{i j} B_{k l}$ coordinates (components) of \mathbf{A} relative to the basis $\boldsymbol{e}_{1}, \boldsymbol{e}_{2}, \boldsymbol{e}_{3}$

- fourth order unit tensor

$$
\mathbf{I}=\delta_{i k} \delta_{j l} \boldsymbol{e}_{i} \otimes \boldsymbol{e}_{j} \otimes \boldsymbol{e}_{k} \otimes \boldsymbol{e}_{l} \quad \mathbf{I}: \boldsymbol{A}=\boldsymbol{A}
$$

- transpose of fourth order unit tensor

$$
\mathbf{I}^{\mathrm{t}}=\delta_{i l} \delta_{j k} \boldsymbol{e}_{i} \otimes \boldsymbol{e}_{j} \otimes \boldsymbol{e}_{k} \otimes \boldsymbol{e}_{l} \quad \quad \mathbf{I}^{\mathrm{t}}: \boldsymbol{A}=\boldsymbol{A}^{\mathrm{t}}
$$

tensor algebra - fourth order tensors

- symmetric fourth order unit tensor

$$
\mathbf{l}^{\mathrm{sym}}=\frac{1}{2}\left[\delta_{i k} \delta_{j l}+\delta_{i l} \delta_{j k}\right] \boldsymbol{e}_{i} \otimes \boldsymbol{e}_{j} \otimes \boldsymbol{e}_{k} \otimes \boldsymbol{e}_{l} \quad \mathbf{1}^{\mathrm{sym}}: \boldsymbol{A}=\boldsymbol{A}^{\mathrm{sym}}
$$

- screw-symmetric fourth order unit tensor

$$
\mathbf{1}^{\mathrm{skw}}=\frac{1}{2}\left[\delta_{i k} \delta_{j l}-\delta_{i l} \delta_{j k}\right] \boldsymbol{e}_{i} \otimes \boldsymbol{e}_{j} \otimes \boldsymbol{e}_{k} \otimes \boldsymbol{e}_{l} \quad \mathbf{1}^{\mathrm{skw}}: \boldsymbol{A}=\boldsymbol{A}^{\mathrm{skw}}
$$

- volumetric fourth order unit tensor

$$
\mathbf{I}^{\mathrm{vol}}=\frac{1}{3} \delta_{i j} \delta_{k \boldsymbol{l}} \boldsymbol{e}_{i} \otimes \boldsymbol{e}_{j} \otimes \boldsymbol{e}_{k} \otimes \boldsymbol{e}_{l}
$$

$$
\mathbf{I}^{\mathrm{vol}}: \boldsymbol{A}=\boldsymbol{A}^{\mathrm{vol}}
$$

- deviatoric fourth order unit tensor

$$
\mathbf{I}^{\mathrm{dev}}: \boldsymbol{A}=\boldsymbol{A}^{\mathrm{dev}}
$$

$\mathbf{I}^{\mathrm{dev}}=\left[-\frac{1}{3} \delta_{i j} \delta_{k l}+\frac{1}{2} \delta_{i k} \delta_{j l}+\frac{1}{2} \delta_{i l} \delta_{j k}\right] \boldsymbol{e}_{i} \otimes \boldsymbol{e}_{j} \otimes \boldsymbol{e}_{k} \otimes \boldsymbol{e}_{l}$
tensor algebra - scalar product

- scalar (inner) product

$$
\begin{aligned}
\boldsymbol{A} \cdot \boldsymbol{B} & =\left(A_{i j} \boldsymbol{e}_{i} \otimes \boldsymbol{e}_{j}\right):\left(B_{k l} \boldsymbol{e}_{k} \otimes \boldsymbol{e}_{l}\right) \\
& =A_{i j} B_{k l} \delta_{i k} \boldsymbol{e}_{i} \otimes \boldsymbol{e}_{l} \\
& =A_{i j} B_{j l} \boldsymbol{e}_{i} \otimes \boldsymbol{e}_{l}=C_{i l} \boldsymbol{e}_{i} \otimes \boldsymbol{e}_{l}=\boldsymbol{C}
\end{aligned}
$$

of two second order tensors \boldsymbol{A} and \boldsymbol{B}

- zero and identity

$$
0 \cdot A=A \quad I \cdot A=A
$$

- properties of scalar product $(\boldsymbol{A} \cdot \boldsymbol{B})^{\mathrm{t}}=\boldsymbol{B}^{\mathrm{t}} \cdot \boldsymbol{A}^{\mathrm{t}}$

$$
\begin{aligned}
& \alpha(\boldsymbol{A} \cdot \boldsymbol{B})=(\alpha \boldsymbol{A}) \cdot \boldsymbol{B}=\boldsymbol{A} \cdot(\alpha \boldsymbol{B}) \\
& \boldsymbol{A} \cdot(\boldsymbol{B}+\boldsymbol{C})=\boldsymbol{A} \cdot \boldsymbol{B}+\boldsymbol{A} \cdot \boldsymbol{C} \\
& (\boldsymbol{A}+\boldsymbol{B}) \cdot \boldsymbol{C}=\boldsymbol{A} \cdot \boldsymbol{C}+\boldsymbol{B} \cdot \boldsymbol{C}
\end{aligned}
$$

tensor algebra - scalar product

- scalar (inner) product

$$
\begin{aligned}
\boldsymbol{A} \cdot \boldsymbol{u} & =\left(A_{i j} \boldsymbol{e}_{i} \otimes \boldsymbol{e}_{j}\right) \cdot\left(u_{k} \boldsymbol{e}_{k}\right) \\
& =A_{i j} u_{k} \delta_{j k} \boldsymbol{e}_{i}=A_{i j} u_{j} \boldsymbol{e}_{i}=v_{i} \boldsymbol{e}_{i}=\boldsymbol{v}
\end{aligned}
$$

of second order tensor \boldsymbol{A} and vector \boldsymbol{u}

- zero and identity
$0 \cdot u=0 \quad \boldsymbol{I} \cdot \boldsymbol{u}=\boldsymbol{u}$
- positive definiteness
$\boldsymbol{a} \cdot \boldsymbol{A} \cdot \boldsymbol{a}>0$
- properties of scalar product
$\boldsymbol{A} \cdot(\alpha \boldsymbol{a}+\beta \boldsymbol{b})=\alpha(\boldsymbol{A} \cdot \boldsymbol{a})+\beta(\boldsymbol{A} \cdot \boldsymbol{b})$
$(\boldsymbol{A}+\boldsymbol{B}) \cdot \boldsymbol{a}=\boldsymbol{A} \cdot \boldsymbol{a}+\boldsymbol{B} \cdot \boldsymbol{a}$
$(\alpha \boldsymbol{A}) \cdot \boldsymbol{a}=\alpha(\boldsymbol{A} \cdot \boldsymbol{a})$

tensor algebra - scalar product

- scalar (inner) product

$$
\begin{aligned}
\boldsymbol{A}: \boldsymbol{B} & =\left(A_{i j} \boldsymbol{e}_{i} \otimes \boldsymbol{e}_{j}\right):\left(B_{k l} \boldsymbol{e}_{k} \otimes \boldsymbol{e}_{l}\right) \\
& =A_{i j} B_{k l} \delta_{i k} \delta_{j l}=A_{i j} B_{i j}=\alpha
\end{aligned}
$$

of two second order tensors $\boldsymbol{A}, \boldsymbol{B}$

- scalar (inner) product

$$
\begin{aligned}
\mathbf{A}: \boldsymbol{B} & =\left(A_{i j k l} \boldsymbol{e}_{i} \otimes \boldsymbol{e}_{j} \otimes \boldsymbol{e}_{k} \otimes \boldsymbol{e}_{l}\right):\left(B_{m n} \boldsymbol{e}_{m} \otimes \boldsymbol{e}_{n}\right) \\
& =A_{i j k l} B_{m n} \delta_{k m} \delta_{l n} \boldsymbol{e}_{i} \otimes \boldsymbol{e}_{j} \\
& =A_{i j k l} B_{k l} \boldsymbol{e}_{i} \otimes \boldsymbol{e}_{j}=A_{i j} \boldsymbol{e}_{i} \otimes \boldsymbol{e}_{j}=\boldsymbol{A}
\end{aligned}
$$

of fourth order tensors \mathbf{A} and second order tensor \boldsymbol{B}

- zero and identity

0 : $\boldsymbol{A}=\mathbf{0}$
I: $\boldsymbol{A}=\boldsymbol{A}$

tensor algebra - dyadic product

- dyadic (outer) product

$$
\boldsymbol{A}=\boldsymbol{u} \otimes \boldsymbol{v}=u_{i} \boldsymbol{e}_{i} \otimes v_{j} \boldsymbol{e}_{j}=u_{i} v_{j} \boldsymbol{e}_{i} \otimes \boldsymbol{e}_{j}=A_{i j} \boldsymbol{e}_{i} \otimes \boldsymbol{e}_{j}
$$

of two vectors $\boldsymbol{u}, \boldsymbol{v}$ introduces second order tensor \boldsymbol{A}

- properties of dyadic product (tensor notation)

$$
\begin{aligned}
& (\boldsymbol{u} \otimes \boldsymbol{v}) \cdot \boldsymbol{w}=(\boldsymbol{v} \cdot \boldsymbol{w}) \boldsymbol{u} \\
& (\alpha \boldsymbol{u}+\beta \boldsymbol{v}) \otimes \boldsymbol{w}=\alpha(\boldsymbol{u} \otimes \boldsymbol{w})+\beta(\boldsymbol{v} \otimes \boldsymbol{w}) \\
& \boldsymbol{u} \otimes(\alpha \boldsymbol{v}+\beta \boldsymbol{w})=\alpha(\boldsymbol{u} \otimes \boldsymbol{v})+\beta(\boldsymbol{u} \otimes \boldsymbol{w}) \\
& (\boldsymbol{u} \otimes \boldsymbol{v}) \cdot(\boldsymbol{w} \otimes \boldsymbol{x})=(\boldsymbol{v} \cdot \boldsymbol{w})(\boldsymbol{u} \otimes \boldsymbol{x}) \\
& \boldsymbol{A} \cdot(\boldsymbol{u} \otimes \boldsymbol{v})=(\boldsymbol{A} \cdot \boldsymbol{u}) \otimes \boldsymbol{v} \\
& (\boldsymbol{u} \otimes \boldsymbol{v}) \cdot \boldsymbol{A}=\boldsymbol{u} \otimes\left(\boldsymbol{A}^{\mathrm{t}} \cdot \boldsymbol{v}\right)
\end{aligned}
$$

tensor algebra - invariants

- (principal) invariants of second order tensor

$$
\begin{aligned}
I_{A} & =\operatorname{tr}(\boldsymbol{A}) \\
I I_{A} & =\frac{1}{2}\left[\operatorname{tr}^{2}(\boldsymbol{A})-\operatorname{tr}\left(\boldsymbol{A}^{2}\right)\right] \\
I I I_{A} & =\operatorname{det}(\boldsymbol{A})
\end{aligned}
$$

- derivatives of invariants wit second order tensor

$$
\begin{aligned}
& \partial_{\boldsymbol{A}} I_{A}=\boldsymbol{I} \\
& \partial_{A} I I_{A}=I_{A} \boldsymbol{I}-\boldsymbol{A} \\
& \partial_{\boldsymbol{A}} I I I_{A}=I I I_{A} \boldsymbol{A}^{-\mathrm{t}}
\end{aligned}
$$

tensor algebra - determinant

- determinant of second order tensor $\quad I I I_{A}=\operatorname{det}(\boldsymbol{A})$

$$
\begin{aligned}
\operatorname{det}(\boldsymbol{A}) & =\operatorname{det}\left(A_{i j}\right)=\frac{1}{6} e_{i j k} e_{a b c} A_{i a} A_{j b} A_{k c} \\
& =A_{11} A_{22} A_{33}+A_{21} A_{32} A_{13}+A_{31} A_{12} A_{23} \\
& -A_{11} A_{23} A_{32}-A_{22} A_{31} A_{13}-A_{33} A_{12} A_{21}
\end{aligned}
$$

- properties of determinants of second order tensors

$$
\begin{aligned}
& \operatorname{det}(\boldsymbol{I})=1 \\
& \operatorname{det}\left(\boldsymbol{A}^{\mathrm{t}}\right)=\operatorname{det}(\boldsymbol{A}) \\
& \operatorname{det}(\alpha \boldsymbol{A})=\alpha^{3} \operatorname{det}(\boldsymbol{A}) \\
& \operatorname{det}(\boldsymbol{A} \cdot \boldsymbol{B})=\operatorname{det}(\boldsymbol{A}) \operatorname{det}(\boldsymbol{B}) \\
& \operatorname{det}(\boldsymbol{u} \otimes \boldsymbol{v})=0
\end{aligned}
$$

tensor algebra - inverse

eigenvalue problem - maximum principal value

$$
\kappa^{2}-I_{B} \kappa+I I_{B}=0 \quad \begin{aligned}
& I_{B}:=\operatorname{tr}(\boldsymbol{B})=B_{\alpha \beta} g^{\alpha \beta}=\kappa_{1}+\kappa_{2} \\
& I_{B}:=\operatorname{det}(\boldsymbol{B})=\operatorname{det}\left(B_{\alpha \beta}\right) / \operatorname{det}\left(g_{\alpha \beta}\right)=\kappa_{1} \kappa_{2}
\end{aligned}
$$

tensor algebra - spectral decomposition

- eigenvalue problem of second order tensor

$$
\boldsymbol{A} \cdot \boldsymbol{n}_{A}=\lambda_{A} \boldsymbol{n}_{A} \quad\left[\boldsymbol{A}-\lambda_{A} \boldsymbol{I}\right] \cdot \boldsymbol{n}_{A}=\mathbf{0}
$$

- solution $\operatorname{det}\left(\boldsymbol{A}-\lambda_{A} \boldsymbol{I}\right)=0$ in terms of scalar triple product

$$
\left[\boldsymbol{A} \cdot \boldsymbol{u}-\lambda_{A} \boldsymbol{u}, \boldsymbol{A} \cdot \boldsymbol{v}-\lambda_{A} \boldsymbol{v}, \boldsymbol{A} \cdot \boldsymbol{w}-\lambda_{A} \boldsymbol{w}\right]=0
$$

- characteristic equation $\quad I_{A}=\operatorname{tr}(\boldsymbol{A})$

$$
\begin{array}{rlrl}
\lambda_{A}^{3}-I_{A} \lambda_{A}^{2}+I I_{A} \lambda_{A}-I I I_{A}=0 & I I_{A} & =\frac{1}{2}\left[\operatorname{tr}^{2}(\boldsymbol{A})-\operatorname{tr}\left(\boldsymbol{A}^{2}\right)\right] \\
\text { ectral decomposition } & I I I_{A} & =\operatorname{det}(\boldsymbol{A})
\end{array}
$$

- spectral decomposition

$$
\boldsymbol{A}=\sum_{i=1}^{3} \lambda_{A i} \boldsymbol{n}_{A i} \otimes \boldsymbol{n}_{A i}
$$

- cayleigh hamilton theorem

$$
\boldsymbol{A}^{3}-I_{A} \boldsymbol{A}^{2}+I I_{A} \boldsymbol{A}-I I I_{A} \boldsymbol{I}=\mathbf{0}
$$

tensor algebra - sym/skw decomposition

- symmetric - skew-symmetric decomposition

$$
\boldsymbol{A}=\frac{1}{2}\left[\boldsymbol{A}+\boldsymbol{A}^{\mathrm{t}}\right]+\frac{1}{2}\left[\boldsymbol{A}-\boldsymbol{A}^{\mathrm{t}}\right]=\boldsymbol{A}^{\mathrm{sym}}+\boldsymbol{A}^{\mathrm{skw}}
$$

- symmetric and skew-symmetric tensor

$$
\boldsymbol{A}^{\text {sym }}=\left(\boldsymbol{A}^{\text {sym }}\right)^{\mathrm{t}} \quad \boldsymbol{A}^{\text {skw }}=-\left(\boldsymbol{A}^{\text {skw }}\right)^{\mathrm{t}}
$$

- symmetric tensor

$$
\boldsymbol{A}^{\mathrm{sym}}=\frac{1}{2}\left[\boldsymbol{A}+\boldsymbol{A}^{\mathrm{t}}\right]=\mathbf{l}^{\mathrm{sym}}: \boldsymbol{A}
$$

- skew-symmetric tensor

$$
\boldsymbol{A}^{\mathrm{skw}}=\frac{1}{2}\left[\boldsymbol{A}-\boldsymbol{A}^{\mathrm{t}}\right]=\mathbf{l}^{\mathrm{skw}}: \boldsymbol{A}
$$

tensor algebra - skew-symmetric tensor

- skew-symmetric second order tensor

$$
\boldsymbol{A}^{\mathrm{skw}}=\frac{1}{2}\left[\boldsymbol{A}-\boldsymbol{A}^{\mathrm{t}}\right] \quad \boldsymbol{A}^{\mathrm{skw}}=-\left(\boldsymbol{A}^{\mathrm{skw}}\right)^{\mathrm{t}} \quad \boldsymbol{A}^{\mathrm{skw}}=\boldsymbol{W}
$$

- processes three independent entries defining axial vector

$$
\boldsymbol{w}=-\frac{1}{2} \stackrel{3}{\boldsymbol{e}}: \boldsymbol{W} \quad \boldsymbol{w}=-\stackrel{3}{\boldsymbol{e}} \cdot \boldsymbol{w} \quad \text { such that } \quad \boldsymbol{W} \cdot \boldsymbol{v}=\boldsymbol{w} \times \boldsymbol{v}
$$

- invariants of skew-symmetric tensor

$$
\begin{aligned}
I_{W} & =\operatorname{tr}(\boldsymbol{W})=0 \\
I I_{W} & =\boldsymbol{w} \cdot \boldsymbol{w} \\
I I I_{W} & =\operatorname{det}(\boldsymbol{W})=0
\end{aligned}
$$

tensor algebra - vol/dev decomposition
volumetric - deviatoric decomposition

$$
\boldsymbol{A}=\boldsymbol{A}^{\mathrm{vol}}+\boldsymbol{A}^{\mathrm{dev}}
$$

- volumetric and deviatoric tensor

$$
\operatorname{tr}\left(\boldsymbol{A}^{\mathrm{vol}}\right)=\operatorname{tr}(\boldsymbol{A}) \quad \operatorname{tr}\left(\boldsymbol{A}^{\mathrm{dev}}\right)=0
$$

- volumetric tensor

$$
\boldsymbol{A}^{\mathrm{vol}}=\frac{1}{3}[\boldsymbol{A}: \boldsymbol{I}] \boldsymbol{I}=\mathbf{I}^{\mathrm{vol}}: \boldsymbol{A}
$$

- deviatoric tensor

$$
\boldsymbol{A}^{\mathrm{dev}}=\boldsymbol{A}-\frac{1}{3}[\boldsymbol{A}: \boldsymbol{I}] \boldsymbol{I}=\mathbf{I}^{\mathrm{dev}}: \boldsymbol{A}
$$

tensor analysis - frechet derivative

- consider smooth differentiable scalar field Φ with

scalar argument	$\Phi:$	\mathcal{R}	$\rightarrow \mathcal{R} ;$	$\Phi(x)=\alpha$
vector argument	$\Phi:$	\mathcal{R}^{3}	$\rightarrow \mathcal{R} ;$	$\Phi(\boldsymbol{x})=\alpha$
tensor argument	$\Phi:$	$\mathcal{R}^{3} \times \mathcal{R}^{3} \rightarrow \mathcal{R} ;$	$\Phi(\boldsymbol{X})=\alpha$	

- frechet derivative (tensor notation)
scalar argument
$\mathrm{D} \Phi(x)=\frac{\partial \Phi(x)}{\partial x}=\partial_{x} \Phi(x)$
vector argument
$\mathrm{D} \Phi(\boldsymbol{x})=\frac{\partial \Phi(\boldsymbol{x})}{\partial \boldsymbol{x}}=\partial_{\boldsymbol{x}} \Phi(\boldsymbol{x})$
tensor argument $\mathrm{D} \Phi(\boldsymbol{X})=\frac{\partial \stackrel{\partial \boldsymbol{x}}{\Phi}(\boldsymbol{X})}{\partial \boldsymbol{X}}=\partial_{\boldsymbol{X}} \Phi(\boldsymbol{X})$
tensor algebra - orthogonal tensor
- orthogonal second order tensor $\boldsymbol{Q} \in \operatorname{S0}(3)$

$$
Q^{-1}=\boldsymbol{Q}^{\mathrm{t}} \quad \Leftrightarrow \quad \boldsymbol{Q}^{\mathrm{t}} \cdot \boldsymbol{Q}=\boldsymbol{Q} \cdot \boldsymbol{Q}^{\mathrm{t}}=\boldsymbol{I}
$$

- decomposition of second order tensor

$$
\boldsymbol{A}=\boldsymbol{Q} \cdot \boldsymbol{U}=\boldsymbol{V} \cdot \boldsymbol{Q}
$$

such that $\boldsymbol{a} \cdot \boldsymbol{U} \cdot \boldsymbol{a} \geq 0$ and $\boldsymbol{a} \cdot \boldsymbol{V} \cdot \boldsymbol{a} \geq 0$

- proper orthogonal tensor $\boldsymbol{Q} \in \operatorname{So(3)}$ has eigenvalue $\lambda_{Q}=1$

$$
\boldsymbol{Q} \cdot \boldsymbol{n}_{Q}=\boldsymbol{n}_{Q} \quad \text { with } \quad\left[Q_{i j}\right]=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & +\cos \varphi & +\sin \varphi \\
0 & -\sin \varphi & +\cos \varphi
\end{array}\right]
$$

interpretation: finite rotation around axis \boldsymbol{n}_{Q}

tensor analysis - gateaux derivative

- consider smooth differentiable scalar field Φ with

scalar argument $\Phi:$	\mathcal{R}	$\rightarrow \mathcal{R} ;$	
vector argument $\Phi:$	\mathcal{R}^{3}	$\rightarrow \mathcal{R} ;$	
ven	$=\alpha(\boldsymbol{x})=\alpha$		
tensor argument $\Phi:$	$\mathcal{R}^{3} \times \mathcal{R}^{3} \rightarrow \mathcal{R} ;$		$\Phi(\boldsymbol{X})=\alpha$

- gateaux derivative, i.e. , frechet wit direction (tensor notation) scalar argument $\mathrm{D} \Phi(x) \quad u=\left.\frac{\mathrm{d}}{\mathrm{d} \epsilon} \Phi(x+\epsilon u)\right|_{\epsilon=0} \quad \forall u \in \mathcal{R}$ vector argument $\mathrm{D} \Phi(\boldsymbol{x}) \cdot \boldsymbol{u}=\left.\frac{\mathrm{d}}{\mathrm{d} \epsilon} \Phi(\boldsymbol{x}+\epsilon \boldsymbol{u})\right|_{\epsilon=0} \quad \forall \boldsymbol{u} \in \mathcal{R}^{3}$
tensor argument $\mathrm{D} \Phi(\boldsymbol{X}): \boldsymbol{U}=\left.\frac{\mathrm{d}}{\mathrm{d} \epsilon} \Phi(\boldsymbol{X}+\epsilon \boldsymbol{U})\right|_{\epsilon=0} \quad \forall \boldsymbol{U} \in \mathcal{R}^{3} \otimes \mathcal{R}^{3}$
tensor analysis - gradient
example - displacement gradient / strain
- consider scalar- and vector field in domain $\mathcal{B} \in \mathcal{R}^{3}$

$$
\begin{array}{ll}
f: \mathcal{B} \rightarrow \mathcal{R} & f: \boldsymbol{x} \rightarrow f(\boldsymbol{x}) \\
\boldsymbol{f : \mathcal { B }} \rightarrow \mathcal{R}^{3} & \boldsymbol{f}: \boldsymbol{x} \rightarrow \boldsymbol{f}(\boldsymbol{x})
\end{array}
$$

- gradient of scalar- and vector field
$\nabla f(\boldsymbol{x})=\frac{\partial f(\boldsymbol{x})}{\partial x_{i}}=f_{, i}(\boldsymbol{x}) \boldsymbol{e}_{i} \quad \nabla f(\boldsymbol{x})=\left[\begin{array}{l}f_{11} \\ f_{, 2} \\ f_{, 3}\end{array}\right]$
$\nabla \boldsymbol{f}(\boldsymbol{x})=\frac{\partial f_{i}(\boldsymbol{x})}{\partial x_{j}}=f_{i, j}(\boldsymbol{x}) \boldsymbol{e}_{i} \otimes \boldsymbol{e}_{j} \quad \nabla \boldsymbol{f}(\boldsymbol{x})=\left[\begin{array}{ccc}f_{1,1} & f_{1,2} & f_{1,3} \\ f_{2,1} & f_{2,2} & f_{2,3} \\ f_{3,1} & f_{3,2} & f_{3,3}\end{array}\right]$
renders vector- and 2nd order tensor field

tensor analysis - divergence

- consider vector- and 2 nd order tensor field in domain \mathcal{B}
$\boldsymbol{f}: \mathcal{B} \rightarrow \mathcal{R}^{3} \quad \boldsymbol{f}: \boldsymbol{x} \rightarrow \boldsymbol{f} \quad(\boldsymbol{x})$
$\boldsymbol{F}: \mathcal{B} \rightarrow \mathcal{R}^{3} \otimes \mathcal{R}^{3} \quad \boldsymbol{F}: \boldsymbol{x} \rightarrow \boldsymbol{F}(\boldsymbol{x})$
- divergence of vector- and 2nd order tensor field
$\operatorname{div}(\boldsymbol{f}(\boldsymbol{x}))=\operatorname{tr}(\nabla \boldsymbol{f}(\boldsymbol{x}))=\nabla \boldsymbol{f}(\boldsymbol{x}): \boldsymbol{I}$
$\operatorname{div}(\boldsymbol{f}(\boldsymbol{x}))=f_{i, i}(\boldsymbol{x})=f_{1,1}+f_{2,2}+f_{3,3}$
$\operatorname{div}(\boldsymbol{F}(\boldsymbol{x}))=\operatorname{tr}(\nabla \boldsymbol{F}(\boldsymbol{x}))=\nabla \boldsymbol{F}(\boldsymbol{x}): \boldsymbol{I}$
$\operatorname{div}(\boldsymbol{F}(\boldsymbol{x}))=F_{i j, j}(\boldsymbol{x})=\left[\begin{array}{l}F_{11,1}+F_{12,2}+F_{13,3} \\ F_{21,1}+F_{22,2}+F_{23,3} \\ F_{31,1}+F_{32,2}+F_{33,3}\end{array}\right]$
renders scalar- and vector field
tensor analysis - transformation formulae
- consider scalar, vector and 2 nd order tensor field on $\mathcal{B} \in \mathcal{R}^{3}$

$$
\begin{array}{ll}
\alpha: \mathcal{B} \rightarrow \mathcal{R} & \alpha: \boldsymbol{x} \rightarrow \alpha(\boldsymbol{x}) \\
\boldsymbol{u}: \mathcal{B} \rightarrow \mathcal{R}^{3} & \boldsymbol{u}: \boldsymbol{x} \rightarrow \boldsymbol{u}(\boldsymbol{x}) \\
\boldsymbol{v}: \mathcal{B} \rightarrow \mathcal{R}^{3} & \boldsymbol{v}: \boldsymbol{x} \rightarrow \boldsymbol{v}(\boldsymbol{x}) \\
\boldsymbol{A}: \mathcal{B} \rightarrow \mathcal{R}^{3} \otimes \mathcal{R}^{3} & \boldsymbol{A}: \boldsymbol{x} \rightarrow \boldsymbol{A}(\boldsymbol{x})
\end{array}
$$

- useful transformation formulae (tensor notation)

$$
\begin{aligned}
\nabla(\alpha \boldsymbol{u}) & =\boldsymbol{u} \otimes \nabla \alpha+\alpha \nabla \boldsymbol{u} \\
\nabla(\boldsymbol{u} \cdot \boldsymbol{v}) & =\boldsymbol{u} \cdot \nabla \boldsymbol{v}+\boldsymbol{v} \cdot \nabla \boldsymbol{u} \\
\operatorname{div}(\alpha \boldsymbol{u}) & =\alpha \operatorname{div}(\boldsymbol{u})+\boldsymbol{u} \cdot \nabla \alpha \\
\operatorname{div}(\alpha \boldsymbol{A}) & =\alpha \operatorname{div}(\boldsymbol{A})+\boldsymbol{A} \cdot \nabla \alpha \\
\operatorname{div}(\boldsymbol{u} \cdot \boldsymbol{A}) & =\boldsymbol{u} \cdot \operatorname{div}(\boldsymbol{A})+\boldsymbol{A}: \nabla \boldsymbol{u} \\
\operatorname{div}(\boldsymbol{u} \otimes \boldsymbol{v}) & =\boldsymbol{u} \operatorname{div}(\boldsymbol{v})+\boldsymbol{v} \cdot \nabla \boldsymbol{u}^{\mathrm{t}}
\end{aligned}
$$

tensor analysis - transformation formulae

- consider scalar, vector and 2nd order tensor field on $\mathcal{B} \in \mathcal{R}^{3}$

$\alpha:$	$\mathcal{B} \rightarrow \mathcal{R}$	$\alpha:$	$x_{k} \rightarrow \alpha$
$\left(x_{k}\right)$			
$u_{i}:$	$\mathcal{B} \rightarrow \mathcal{R}^{3}$	$u_{i}:$	$x_{k} \rightarrow u_{i}$
$v_{i}:$	$\left(x_{k}\right)$		
$v_{i} \rightarrow \mathcal{R}^{3}$	$v_{i}: x_{k} \rightarrow v_{i}$	$\left(x_{k}\right)$	
$A_{i j}:$	$\mathcal{B} \rightarrow \mathcal{R}^{3} \otimes \mathcal{R}^{3}$	$A_{i j}: x_{k} \rightarrow A_{i j}\left(x_{k}\right)$	

- useful transformation formulae (index notation)
$\left(\alpha u_{i}\right)_{, j}=u_{i} \alpha_{, j}+\alpha u_{i, j}$
$\left(u_{i} v_{i}\right)_{, j}=u_{i} v_{i, j}+v_{i} u_{i, j}$
$\left(\alpha u_{i}\right)_{, i}=\alpha u_{i, i}+u_{i} \alpha_{, i}$
$\left(\alpha A_{i j}\right)_{, j}=\alpha A_{i j, j}+A_{i j} \alpha_{, j}$
$\left(u_{i} A_{i j}\right)_{, j}=u_{i} A_{i j, j}+A_{i j} u_{i, j}$
$\left(u_{i} v_{j}\right)_{, j}=u_{i} v_{j, j}+v_{j} u_{i, j}$

tensor analysis - integral theorems

- consider scalar,vector and 2 nd order tensor field on $\mathcal{B} \in \mathcal{R}^{3}$

$$
\begin{array}{llll}
\alpha: & \mathcal{B} \rightarrow \mathcal{R} & \alpha: \quad x_{k} \rightarrow \alpha & \left(x_{k}\right) \\
u_{i}: & \mathcal{B} \rightarrow \mathcal{R}^{3} & u_{i}: x_{k} \rightarrow u_{i} & \left(x_{k}\right) \\
A_{i j}: & \mathcal{B} \rightarrow \mathcal{R}^{3} \otimes \mathcal{R}^{3} & A_{i j}: x_{k} \rightarrow A_{i j}\left(x_{k}\right)
\end{array}
$$

- integral theorems (tensor notation)

$$
\begin{array}{cllll}
\mathcal{B} \\
\bullet X \in \mathcal{B} & \int_{\partial \mathcal{B}} \alpha n_{i} & \mathrm{~d} A=\int_{\mathcal{B}} & \alpha_{, i} \mathrm{~d} V & \text { green } \\
\partial \mathcal{B} & \int_{\partial \mathcal{B}} u_{i} n_{i} & \mathrm{~d} A=\int_{\mathcal{B}} & u_{i, i} \mathrm{~d} V & \text { gauss } \\
& \int_{\partial \mathcal{B}} A_{i j} n_{j} & \mathrm{~d} A=\int_{\mathcal{B}} A_{i j, j} \mathrm{~d} V & \text { gauss }
\end{array}
$$

voigt / matrix vector notation

voigt / matrix vector notation

- fourth order material operators as matrix in voigt notation

$$
C^{\text {voigt }}=\left[\begin{array}{llllll}
C_{1111} & C_{1122} & C_{1133} & C_{1112} & C_{1123} & C_{1131} \\
C_{2211} & C_{2222} & C_{2233} & C_{2212} & C_{2223} & C_{2231} \\
C_{3311} & C_{3322} & C_{3333} & C_{3312} & C_{3323} & C_{3331} \\
C_{1211} & C_{1222} & C_{1233} & C_{1212} & C_{1223} & C_{1231} \\
C_{2311} & C_{2322} & C_{2333} & C_{2312} & C_{2323} & C_{2331} \\
C_{3111} & C_{3122} & C_{3133} & C_{3112} & C_{3123} & C_{3331}
\end{array}\right]
$$

- why are strain \& stress different? check these expressions!

$$
\boldsymbol{S}=\mathbf{C}: \boldsymbol{E}
$$

$$
\boldsymbol{S}^{\text {voigt }}=\boldsymbol{C}^{\text {voigt }} \cdot \boldsymbol{E}^{\text {voigt }}
$$

