
homework III - revise your final project
due 03/01/12, 09:30am, 300-020

Late homework can be dropped off in a box in front of Durand 217. Please mark clearly
with date and time @drop off. We will take off 1/10 of points for each 24 hours late,
every 12pm after due date. This homework will count 10% towards your final grade.

problem 1 - growth tensors

We have introduced different growth tensors Fg in class. Discuss the following growth
tensors.

1.1 Fg = ϑ I

1.2 Fg = I + [ϑ− 1] f 0 ⊗ f 0

1.3 Fg = I + [ϑ− 1] s0 ⊗ s0

1.4 Fg =
√

ϑ I + [1−
√

ϑ] n0 ⊗ n0

Here f 0 denotes a distinct fiber direction, s0 is a sheet direction, n0 is the normal to a
characteristic microstructural plane, and ϑ is a scalar-valued growth multiplier.

For each growth tensor, focus on: (i) its mechanical interpretation, e.g., isotropic, trans-
versely isotropic, orthotropic, generally anisotropic; (ii) its microstructural interpreta-
tion, e.g., volumetric growth, fiber lengthening, fiber thickening, area growth; (iii) its
biological application, e.g., which type of tissue growth does it characterize, why does
this ansatz make sense.

problem 2 - growth tensors

Assume the following microstructural vectors, f 0 = [1, 0, 0]t, s0 = [0, 1, 0]t, and n0 =
[0, 0, 1]t aligned with the cartesian coordinates, and a growth multiplier of ϑ = 2.

2.1 Calculate the four growth tensors Fg from 1.1 to 1.4.

2.2 Calculate the volume change of a cube of unit length for all four growth tensors
Fg from 1.1 to 1.4 using the Jacobian Jg =det(Fg).

2.3 Draw a cubic block of tissue of unit length in a three-dimensional coordinate sys-
tem. Add the unit vectors dX1 = [1, 0, 0]t, dX2 = [0, 1, 0]t, and dX3 = [0, 0, 1]t.
For each of the growth tensors Fg in 1.1 to 1.4, calculate and illustrate the de-
formed vectors dx1, dx2 and dx3 using dx = Fg · dX. Illustrate the grown block.
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problem 3 - growing bones in matlab

Last year’s class paper “Computational modeling of bone density profiles in response
to gait: a subject-specific approach” by Henry Pang, Abhishek Shiwalkar, Chris Mador-
mo, and Rebecca Taylor describes bone growth in the tibia. Read the paper carefully.

3.1 Download the matlab file package ME337 MATLAB.tar.gz from the coursework
website or from our lab website http://biomechanics.stanford.edu.

3.2 To run the example from the class paper, open the main file nlin fem.m in your
matlab editor, and make sure that all input file readings are commented out by a
% sign in the first column of lines 6 through 22. The only active input line should
be line 10 ex henry.

3.3 In the command window, call the main file by typing nlin fem and wait for the
mesh to be generated.

3.4 Run the density evolution algorithm for 5 time steps by typing step„5. Describe
what you see in the command window and in the graphics window. How many
iterations does a typical load step take to find the equilibrium of the nonlinear
problem? Focus on load step 5. Report the residuals, i.e., the errors in solution,
to demonstrate quadratic convergence of the Newton Raphson scheme.

3.5 Then, run the algorithm for an additional 35 time steps by typing step„35 in the
command window. Quit the algorithmic environment by typing quit. There are
two major fields that describe the geometry of a finite element input file, in this
case Henry’s tibia. Type q0 to show one of them and then size(q0). What does
the q0 field contain? Type edof to show one of them and then size (edof). What
does the edof field contain?

3.6 Learn to fake your results! Most people show finite element results in terms of
colorful plots. Here, the color figures are produced in the subroutine plot int.m.
You can easily manipulate a plot by changing the color axis. Type caxis([0.5
1.5]) to change the color axis and observe what happens. Type caxis([0.00
1.25]) to change the color axis back again. You can then plot your final figure,
e.g., by print(’-depsc’,’-r300’,’figure01.eps’).

3.7 You have now entirely reproduced Henry’s bone density profile. Compare your
figure01.eps with Figure 6 in last year’s class paper. What is different? Do you
have an idea why?

3.8 Now, pretend Henry’s gait analysis had resulted in a different input for the finite
element simulation. Open the input file ex henry.m. In lines 64 through 67, you
can see how the load is generated. Keep the medial load as it is, but assume that
the lateral load was not applied at node 248 but at node 123. Modify your input
file accordingly, save it, and rerun the simulation nlin fem for step„40 time steps.
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Quit your algorithmic environment by typing quit. Plot your final figure with
print(’-depsc’, ’-r300’,’figure02.eps’).

3.8 Compare both figures, figure01.eps and figure02.eps, in three to five sentences
and attach them to your homework.

For this part of the homework, it is okay to work in groups, especially if you are not
very familiar with matlab. If you create the results in a group, however, the results,
interpretations, and discussions must be written individually by each group member.
Each group member must understand the matlab algorithm.

problem 4 - wikipedia websites on growth

Create or edit a wikipedia website on growth. To create a site, you can think of any
growth example. To edit a site, e.g., go to http://en.wikipedia.org/wiki/Wolff’s law
or http://en.wikipedia.org/wiki/Tissue expansion. Add at least one paragraph of
text with at least two references. Ideally, even add a figure. Print your submission and
hand it in with your homework.

problem 5 - revise your final project

5.1 Download the style file me337 project sample.doc from the coursework website
and paste in your title, outline, opening sentence, introduction, schematic draw-
ing, and references from homework II.

5.2 Expand the reference section to at least three key references and seven additional
references. Make sure your citations all have the same style. I will take off points
if they don’t! This is what some picky reviewers criticize first before even reading
your paper.

5.3 Revise your introduction and make sure that all your references are cited. The
introduction should: (i) contain your catchy opening sentence with citation, (ii)
motivate your work, and (iii) give an overview of the current state of the field. It
should be one to two columns long.

5.4 Draft an outline of all the figures you would like to include in your manuscript.
This is the most important step of drafting your paper, since most scientific pa-
pers are written around figures. For each figure, create a place holder or the figure
itself. Create meaningful figure captions. The figure captions in the sample file
are actually not a good example. In the biological literature, captions are usually
more detailed and can be several lines long. When you adopt figures from the
literature, cite your source. Remember that in a real journal paper, you cannot
use other authors’ figures without copyright agreement.
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Abstract The goal of this study is to explore the potential
of computational growth models to predict bone density pro-
files in the proximal tibia in response to gait-induced loading.
From a modeling point of view, we design a finite element-
based computational algorithm using the theory of open
system thermodynamics. In this algorithm, the biological
problem, the balance of mass, is solved locally on the inte-
gration point level, while the mechanical problem, the bal-
ance of linear momentum, is solved globally on the node
point level. Specifically, the local bone mineral density is
treated as an internal variable, which is allowed to change
in response to mechanical loading. From an experimental
point of view, we perform a subject-specific gait analysis to
identify the relevant forces during walking using an inverse
dynamics approach. These forces are directly applied as loads
in the finite element simulation. To validate the model, we
take a Dual-Energy X-ray Absorptiometry scan of the sub-
ject’s right knee from which we create a geometric model
of the proximal tibia. For qualitative validation, we compare
the computationally predicted density profiles to the bone
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mineral density extracted from this scan. For quantitative
validation, we adopt the region of interest method and deter-
mine the density values at fourteen discrete locations using
standard and custom-designed image analysis tools. Qualita-
tively, our two- and three-dimensional density predictions are
in excellent agreement with the experimental measurements.
Quantitatively, errors are less than 3% for the two-dimen-
sional analysis and less than 10% for the three-dimensional
analysis. The proposed approach has the potential to ulti-
mately improve the long-term success of possible treat-
ment options for chronic diseases such as osteoarthritis on a
patient-specific basis by accurately addressing the complex
interactions between ambulatory loads and tissue changes.

Keywords Growth · Open system thermodynamics ·
Density · Bone · Finite elements · Gait analysis

1 Motivation

Osteoarthritis is the most prevalent joint disorder in the world
and remains one of the few chronic diseases of aging for
which there is little to no effective treatment (Hunter and
Felson 2006). It is the leading cause of chronic disability
in the United States affecting almost 27 million Americans
(Altman 2010). Shedding light on the causes and progression
of osteoarthritis has the potential to drastically improve the
quality of life for the millions of sufferers. Although osteoar-
thritis in articular tissues is widely believed to be a disease of
the cartilage alone, some studies indicate that changes in sub-
chondral bone density are associated with cartilage damage
in the knee (Hunter and Felson 2006; Radin and Rose 1986).
In particular, it has been shown that an increase in subchon-
dral density leads to a loss of the shock absorbing capacity
of the bone, causing increased transmission of loads into the
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380 H. Pang et al.

cartilage (Dequeker et al. 1997). This argument identifies the
subchondral bone, the region just below the cartilage, as an
important area of interest in current osteoarthritis research.

Osteoarthritis is a multifactorial process in which mechan-
ical factors play a key role (Andriacchi 1994). It is char-
acterized through changes in structure and function of the
entire joint, including the subchondral bone, meniscii, lig-
aments, periarticular muscle, capsule, and synovium. Knee
osteoarthritis typically affects the tibiofemoral compartment
on the medial side of the knee (Hulet et al. 2002). This is
most likely due to the fact that a majority of the load gener-
ated during walking is transmitted through this side (Baliunas
et al. 2002). As a result, the bone mineral content is typically
significantly larger in the medial than in the lateral plateau
(Hurwitz et al. 1998). Thorough clinical studies have inves-
tigated the asymmetric load division between the medial and
lateral compartments during normal walking (Schipplein and
Andriacchi 1991). The first mathematical model that studied
force transmission through the knee joint at the medial and
lateral condyles using force plate analyses dates back to the
early 70s (Morrison 1970). While a significant amount of
research has been dedicated to the role of the subchondral
bone in the development of osteoarthritis within the past four
decades, there is a knowledge gap in terms of integrating all
these findings into a single unique tool to reliably predict
global density profiles on a patient-specific basis.

In the mid 70s, first mechanistic models were proposed
to characterize the functional adaptation of bone in response
to loading (Ambrosi et al. 2011; Cowin and Hegedus 1976).
Conceptually speaking, these approaches model bone within
the framework of open system thermodynamics (Kuhl and
Steinmann 2003b; Menzel 2005), allowing it to adapt its den-
sity in response to changes in the mechanical environment
(Himpel et al. 2005; Kuhl and Steinmann 2003c). Within
the past two decades, finite element models have been recog-
nized as a powerful tool to investigate bone and tissue growth
(Huiskes et al. 1987; Jacobs et al. 1995). Finite element sim-
ulations can be used to predict bone growth and resorption in
response to various different loading patterns that would not
be feasible to study experimentally (Reina-Romo et al. 2010;
Weinans et al. 1992). They also allow for efficient parameter
studies, which can be used to identify key contributors to bone
growth (Carpenter and Carter 2010a; Hambli et al. 2011),
bone straightening (Carpenter and Carter 2010b), bone tor-
sion (Taylor et al. 2008), or bone failure (Gitman et al. 2010;
Zhang et al. 2010). Although promising, the use of finite ele-
ment models to predict bone mineral density in osteoarthritis
is still in its developmental stages, and the validation of the
underlying models remains largely qualitative.

The goal of this study is therefore to qualitatively
and quantitatively explicate how forces during gait affect
the bone density distribution in the proximal tibia using
a combined experimental-computational approach. In a

multi-faceted series of studies including gait analysis,
Dual-Energy X-ray Absorptiometry, bone mineral density
analysis, and two- and three-dimensional finite element anal-
yses, we integrate data from multiple sources to explore the
interplay between biological and mechanical equilibrium. To
prototype this approach for a representative subject, we first
perform a gait analysis. Using an inverse dynamics approach,
we reconstruct force vectors with a precise information of
magnitude, location, and direction of the forces experienced
by the tibia during gait. We apply these load vectors directly
to a finite element analysis that allows us to predict a sub-
ject-specific bone density profile. The underlying geometric
model is extracted from a Dual-Energy X-ray Absorptiom-
etry scan of the subject’s right knee. This scan also serves
to validate the computational density prediction. For quali-
tative validation, we compare characteristic features of the
density profiles from experiment and simulation. For quanti-
tative validation, we adopt the region of interest method and
extract discrete density values using image analysis tools.

This manuscript is organized as follows. In Sect. 2, we
briefly summarize the continuum approach toward density
growth in terms of kinematic equations, balance equations,
and constitutive equations. Next, in Sect. 3, we discuss their
computational solution with a particular focus on the local
and global Newton iterations for biological and mechani-
cal equilibrium. The design of a subject-specific geomet-
ric model based on Dual-Energy X-ray Absorptiometry is
illustrated in Sect. 4. We then demonstrate the measurement
of the tibial joint forces through a gait analysis in Sect. 5.
In Sect. 6, we integrate all these pieces of information in a
subject-specific two- and three-dimensional finite element-
based density prediction. We conclude with an error analysis
by comparing computationally predicted and experimentally
measured bone mineral density profiles. Last, in Sect. 7, we
discuss the overall results and illustrate the clinical potential
of the proposed approach.

2 Continuum modeling of density growth

In this section, we illustrate the governing equations of
density growth within the framework of open system ther-
modynamics (Kuhl and Steinmann 2003b, 2004). We briefly
summarize the kinematic equations, the balance equations,
and the constitutive equations.

2.1 Kinematics

We adopt the kinematics of finite deformations and introduce
the deformation map ϕ, which, at any given time t , maps
the material placement X of a physical particle in the mate-
rial configuration B0 to its spatial placement x in the spatial
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Computational modeling of bone density profiles 381

configuration Bt .

x = ϕ (X, t) (1)

In the following, we apply a formulation which is entirely
related to the material frame of reference. Accordingly,
∇{•} = ∂X{•}|t and Div {•} = ∂X{•}|t : I denote the gradi-
ent and the divergence of any field {•} (X, t) with respect to
the material placement X at fixed time t , where I is the mate-
rial identity tensor. In this notation, the deformation gradient
F , which defines the linear tangent map from the material
tangent space T B0 to the spatial tangent space T Bt , takes the
following representation.

F = ∇ϕ (X, t) (2)

Its determinant introduces the Jacobian J = det F > 0,
which characterizes volumetric changes. In what follows,
{•̇} = ∂t {•}|X denotes the material time derivative of any
field {•} (X, t) at fixed material placement X. We would like
to point out that, for the sake of completeness, we have cho-
sen a general nonlinear kinematic formulation here, although
bone, in the physiological range, only experiences infinites-
imal strains. However, this generalization does not induce
any additional complexities, since the overall set of equa-
tions turns out to be nonlinear, and will, therefore, have to be
solved using a nonlinear solution scheme anyways.

2.2 Balance equations of open systems

In open system thermodynamics, the balance of mass bal-
ances the rate of change of the material density ρ̇0 with a
possible in– or outflux of mass R and mass source R0.

ρ̇0 = Div R +R0 (3)

Similarly, the balance of linear momentum balances the den-
sity-weighted rate of change of the momentum v̇, wherev= ϕ̇

is nothing but the spatial velocity, with the momentum flux
P and the momentum source b0.

ρ0 v̇ = Div P + b0 (4)

The above equation represents the mass-specific version of
the balance of momentum, which is particularly useful in the
context of growth, since it contains no explicit dependencies
on the changes in mass (Kuhl and Steinmann 2003a,b).

2.3 Constitutive equations of density growth

Last, we specify constitutive equations for the mass flux R,
the mass source R0, the momentum flux P , and the momen-
tum source b0. The mass flux R is typically related to an
interstitial fluid flow and to concentration gradients in the
individual bone constituents (Ambrosi et al. 2011). To avoid
the use of sophisticated mixture theories (Reina-Romo et al.

2010), here, we assume that the mass flux is negligibly small,

R = 0 (5)

and that all changes in mass can be attributed exclusively
to the mass source R0. Accordingly, we propose an energy-
based format for the mass source,

R0 = c
[[
ρ0 / ρ

∗
0

]−m
ψ0 − ψ∗0

]
(6)

where ψ0 is the free energy, ρ∗0 is the initial density, ψ∗0 is
the target energy or stimulus, and m is a unit-less algorithmic
exponent that ensures the stability of the adaptation algorithm
(Harrigan and Hamilton 1993). The parameter c is of the unit
time divided by length squared and governs the speed of the
adaption process. In the context of porous materials, the free
energy

ψ0 =
[
ρ0/ρ

∗
0

]n
ψneo

0 (7)

is typically characterized through the elastic free energy, e.g.,
of Neo-Hookean type,

ψneo
0 = 1

2 [ λ ln2(J )+ μ [F · F − 3− 2 ln(J ) ] ] (8)

scaled by the relative density
[
ρ0/ρ

∗
0

]n. Here, λ and μ are
the classical Lamé parameters. The unit-less porosity expo-
nent n typically varies between 1≤ n ≤3.5 depending on the
particular open-pored ground substance (Carter and Hayes
1977). This particular choice of the free energy defines the
Piola stress

P = ∂ψ0

∂F
= [

ρ0/ρ
∗
0

]n
P neo (9)

as the classical Neo-Hookean stress

P neo = ∂ψ0

∂F

neo

= μF + [ λ ln(J )− μ ]F−t (10)

weighted by the relative density
[
ρ0/ρ

∗
0

]n. For the sake of
simplicity, we assume that the momentum source

b0 = 0 (11)

vanishes identically. The momentum source could be criti-
cal, for example, to characterize density adaptation in a low
gravity environment, e.g., loss of bone in space.

3 Computational modeling of density growth

In this section, we briefly reiterate the computational model
for density growth within the framework of a nonlinear finite
element analysis. To simplify the model, we apply four com-
mon assumptions. For the biological equilibrium Eq. (3),
we assume that the mass flux is significantly smaller than
the mass source and therefore negligible, i.e., R = 0. This
implies that we can apply a C−1-continuous interpolation of
the density ρ0, which suggests that it can be treated locally as
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382 H. Pang et al.

an internal variable on the integration point level (Kuhl et al.
2003; Kuhl and Steinmann 2003a). For the mechanical equi-
librium Eq. (4), we assume that gravity effects are negligible,
i.e., b0 = 0, that no traction is acting on the bone surface,
i.e., P · N = 0, and that the time scale of the biological
problem is much larger than the time scale of the mechanical
problem, i.e., v̇ = 0. This implies that we can neglect volume
forces, apply homogeneous Neumann boundary conditions,
and treat the mechanical problem as quasi static.

3.1 Local Newton iteration—biological equilibrium

With the simplifying assumption of a vanishing mass flux,
R = 0, the biological equilibrium Eq. (3) remains strictly
local, and we can solve it locally on the integration point
level. To discretize it in time, we partition the time interval
of interest T into nstp subintervals,

T =
nstp⋃
k=1

[
tk, tk+1

]
(12)

and focus on the interval
[

tk, tk+1
]

for which �t = tk+1 −
tk > 0 denotes the current time increment. Our goal is to
determine the reference density ρ0 for a given deformation
state ϕ at time tk+1 and a given reference density ρk

0 at the
end of the previous time step tk . Note that for the sake of
compactness, we have omitted the index k+1 for all quanti-
ties at the end of the current time step tk+1. To approximate
the material time derivative ρ̇0, we introduce the following
finite difference approximation.

ρ̇0 =
[
ρ0 − ρk

0

] /
�t (13)

In the spirit of implicit time stepping schemes, we now refor-
mulate the balance of mass (3) with the help of this finite
difference approximation, introducing the discrete residual
Rρ in terms of the unknown reference density ρ0.

Rρ=ρ0−ρk
0−c

[[
ρ0/ρ

∗
0

][n −m]
ψneo

0 − ψ∗0
]
�t

.= 0 (14)

We suggest to solve this nonlinear residual equation for the
unknown reference density using a local Newton iteration.
Within each iteration step, we calculate the linearization of
the residual Rρ with respect to the reference density ρ0,

Kρ = dRρ

dρ0
= 1− c [ n−m ] 1

ρ0

[
ρ0/ρ

∗
0

][n −m]
ψneo

0 �t

(15)

to determine the iterative update of the unknown reference
density ρ0 ← ρ0 − Rρ /Kρ until convergence is achieved,
i.e., until the update�ρ0 = −Rρ /Kρ is below a user-defined
threshold value.

3.2 Global Newton iteration—mechanical equilibrium

With the simplifying assumptions of a vanishing momen-
tum source, b0 = 0, and negligible inertia effects, v̇ = 0,
the mechanical equilibrium Eq. (4) reduces to the internal
force balance, Div P = 0. We cast it into its weak form,
Gϕ = ∫

B0
∇δϕ : P dV

.= 0, through the multiplication
with the test function δϕ and the integration over the domain
of interest B0 to solve it globally on the node point level. To
discretize it in space, we partition the domain of interest B0

into nel finite elements Be
0.

B0 =
nel⋃

e=1

Be
0 (16)

Our goal is to determine the deformation state ϕ for a given
loading at time t . To approximate the test function δϕ, the
unknown deformation ϕ, and their gradients ∇δϕ and ∇ϕ,
we apply an isoparametric Bubnov-Galerkin based finite
element interpolation,

δϕ =
nen∑
i=1

N iδϕi , ∇δϕ =
nen∑
i=1

δϕi ⊗∇N i

ϕ =
nen∑
j=1

N jϕ j ∇ϕ =
nen∑
j=1

ϕ j ⊗∇N j

(17)

where N are the element shape functions, and i, j =
1, . . . , nen are the element nodes. We now reformulate the
weak form of the balance of linear momentum
(4) with the help of these finite element approximations,
introducing the discrete residual RϕI in terms of the unknown
nodal deformation ϕ J .

RϕI =
nel
A

e=1

∫

Be

∇N i
ϕ · P dVe

.= 0 (18)

Herein, the operator A symbolizes the assembly of all ele-
ment residuals at the j = 1, . . . , nen element nodes to the
overall residual at the global node points J = 1, . . . , nel.
Again, we suggest an incremental iterative Newton algorithm
to solve the nonlinear residual equation for the unknown
deformation. The consistent linearization of the residual RϕI
with respect to the nodal vector of unknowns ϕ J introduces
the global stiffness matrix.

KϕI J =
∂RϕI
∂ϕ J
=

nel
A

e=1

∫

Be

∇N i
ϕ · A · ∇N j

ϕ dVe (19)

Upon convergence of the local Newton iteration described in
the Sect. 3.1, we calculate the Piola stress

P = [
ρ0/ρ

∗
0

]n [μF + [ λ ln(J )− μ] F−t ] (20)

locally at the integration point level to evaluate the global
residual (18). Last, to evaluate the global stiffness matrix
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Computational modeling of bone density profiles 383

Table 1 Computational modeling of density growth embedded in non-
linear finite element algorithm

The balance of mass is evaluated locally with the density stored at the
integration point level, while the balance of linear momentum is evalu-
ated globally with the deformation stored at the node point level

(19), we linearize the algorithmic Piola stress to obtain the
algorithmic constitutive moduli,

A = dP

dF
= ∂P

∂F

∣∣∣∣
ρ0

+ ∂P

∂ρ0

∣∣∣∣
F

⊗ ∂ρ0

∂R0

∂R0

∂F

= [
ρ0 / ρ

∗
0

]n Aneo + γ P ⊗ P (21)

which we evaluate locally on the integration point level. The
first term is nothing but the density-scaled tangent operator
of the classical Neo-Hookean material,

Aneo= dP

dF

neo

= λF−t ⊗ F−t

+[μ− λ ln(J )]F−t⊗F−1 + μ I ⊗ I (22)

where we have used the following abbreviations, {•⊗◦}i jkl =
{•}ik {◦} jl and {•⊗◦}i jkl = {•}il {◦} jk , for its nonstandard
fourth order products. Finally, the scalar coefficient γ takes
the following format.

γ = c n
[
ρ0/ρ

∗
0

]−m
�t

ρ0 − c [n−m]
[
ρ0 / ρ

∗
0

][n−m]
ψneo

0 �t
(23)

For each global Newton iteration step, we iteratively
update the current deformation state ϕ ← ϕ−Kϕ−1

I J ·RϕI until
we achieve algorithmic convergence. Upon convergence, we
store the corresponding reference densityρ0 at the integration
point level. The finite element algorithm for density growth
is implemented in Matlab and summarized in Table 1, see
also Kuhl et al. (2003); Taylor et al. (2008).

4 Subject-specific geometry and density profile

In this section, we briefly summarize the generation of the
Dual-Energy X-ray Absorptiometry scan of the subject’s tib-
iofemoral joint which serves dual purpose. Using this scan,
we create a subject-specific geometric model of the proximal
tibia and characterize the subject-specific density profile for
later model validation.

Fig. 1 Characterization of density profile through Dual-Energy X-ray
Absorptiometry, DEXA, of the study subject’s right knee. A subject-
specific geometric model of the proximal tibia is generated from the
outline of the DEXA scan. The gray-scale coded bone mineral density
measurement is used to validate our bone growth model

4.1 Bone mineral density

Dual-Energy X-ray Absorptiometry, or DEXA scanning, is
currently the most common technique to measure bone min-
eral density (Bolotin 2007). It is based on two X-ray beams
with different energy levels, which are directed at the bone.

The degree by which these beams are absorbed by the
bone is an integral measure of the bone mineralization along
the beam axis, which can be converted into the bone mineral
density (Nielsen 2000). Although recent studies have demon-
strated that bone mineral density measured via DEXA lacks
both sensitivity and selectivity to effectively identify patients
with decreased bone strength and at risk of fracture (Bone
et al. 2005; Kaptoge et al. 2005), the DEXA scan remains the
current clinical standard to diagnose bone loss and osteopo-
rosis (Gandolini and Salvioni 2004). Here, to generate a sub-
ject-specific geometry of the proximal tibia and to validate
our bone growth model, we take a DEXA scan of our study
subject’s right knee. This scan of the tibiofemoral joint pro-
vides quantitative information about the bone mineral den-
sity in the distal femur, the proximal fibula, and the proximal
tibia, see Fig. 1.

4.2 Two-dimensional tibia model

To create a two-dimensional geometric model of the subject’s
right proximal tibia, we outline the tibial surface from the
DEXA scan, see Fig. 1. The outline is imported into Matlab
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384 H. Pang et al.

Fig. 2 Finite element meshes of the proximal tibia. The subject-spe-
cific two-dimensional mesh consists of 1,416 linear triangular elements,
782 nodes, and 1,564 degrees of freedom, left. The generic three-dimen-
sional mesh consists of 3,190 linear tetrahedral elements, 893 nodes,
and 2,679 degrees of freedom, right

and then meshed with two-dimensional triangular elements.
The resulting mesh consists of 1,416 linear triangular ele-
ments connected at 782 nodes and has 1,564 degrees of free-
dom, see Fig. 2, left.

4.3 Three-dimensional tibia model

To generate a generic three-dimensional geometric model,
we discretize the magnetic resonance image of a randomly
selected healthy adult right knee from our database. We cre-
ate a three-dimensional mesh, which contains 3,190 linear
tetrahedral elements connected at 893 nodes, introducing
2,679 degrees of freedom, see Fig. 2, right.

5 Subject-specific forces during gait

We determine the maximum forces acting on the tibia during
walking through a gait analysis (Andriacchi et al. 2004). In
gait analysis experiments, force platforms are used to mea-
sure ground reaction forces acting on the body, while video-
based motion capture techniques are applied to record the
three-dimensional positions and orientations of characteris-
tic body segments. To identify these segments, passive mark-
ers that reflect infrared radiation are placed strategically on
anatomic landmarks of the subject’s lower right extremity
including the right hip joint, the knee joint, and the ankle
joint, see Fig. 3.

The subject performs three walking trials at a self-selected
normal speed. An eight-camera opto-electronic system for
three-dimensional motion analysis is used to record lower
limb kinematics. Ground reaction forces are collected using a
multi-component force plate placed in the center of the walk-

Fig. 3 Characterization of peak loads through gait analysis. Reflective
markers are placed on the subject’s lower right extremity. Maximum
knee forces are calculated from measured marker kinematics and force
plate data using an inverse dynamics approach, Andriacchi et al. (1997)

Table 2 Maximum forces in the knee averaged over three gait cycles

Trial I II III Mean

Max knee force [N] 552 549 579 560

Max knee force [% BW] 94.9 94.4 99.4 96.2

Inverse dynamics are used to determine the knee reaction forces from
the measured ground reaction force

way. Marker kinematics and force plate data are sampled at
a frequency of 120 Hz. In a postprocessing analysis, joint
forces and adduction moments in the hip, knee, and ankle
joint are calculated from marker kinematics and force data
using an inverse dynamics approach (Andriacchi et al. 1997).
We choose the maximum ground reaction force during the
midstance phase of gait as the relevant load case. The result-
ing maximum knee forces of all three walking trial are sum-
marized in Table 2. We identify an average maximum knee
force of 560 N. To account for asymmetric loading between
the medial and lateral compartments, we apply 45% of the
total gait load to the lateral side and 55% to the medial side
Zhao et al. (2007), resulting in lateral and medial forces of
252 N and 308 N, respectively, see Fig. 4.

6 Subject-specific density prediction

To predict the bone in the right proximal tibia, we perform
two- and three-dimensional nonlinear finite element analyses
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Fig. 4 Region of interest method to characterize regional density vari-
ations in the proximal tibia. The local bone mineral density, BMD, is
evaluated in fourteen equal-sized regions along the tibial width, Hulet
et al. (2002). Bone mineral densities of the lateral and medial tibial pla-
teau are identified as regional averages over three neighboring regions,
BMDlat = [BMD2+BMD3+BMD4 ]/3 and BMDmed = [BMD11+
BMD12+BMD13 ]/3. To account for asymmetric loading between the
medial and lateral compartments, we apply 45% of the total gait load
to the lateral side and 55% to the medial side, Zhao et al. (2007)

based on a Matlab implementation of the algorithm described
in Sect. 3. We use the finite element discretizations illus-
trated in Fig. 2, which consist of 1,416 linear triangular
elements, 782 nodes, and 1,564 degrees of freedom for the
two-dimensional model, and of 3,190 linear tetrahedral ele-
ments, 893 nodes, and 2,679 degrees of freedom for the
three-dimensional model. For the elastic material model,
we choose the Lamé parameters to λ = 2,186 N/mm2 and
μ = 1,458 N/mm2, corresponding to a Young’s modulus
of E = 3,790 N/mm2 and a Poisson’s ratio of ν = 0.3,
see Carter and Hayes (1977); Lancianese et al. (2008). For
the growth model, we choose the initial density to ρ∗0 =
1.0 g/cm3, the target energy to ψ∗0 = 0.00275 N/mm2, the
porosity exponent to n = 2.0, and the algorithmic expo-
nent to m = 3, see Harrigan and Hamilton (1993), Kuhl
et al. (2003).

Using the knee forces identified through the gait analy-
sis in Sect. 5, we apply the average vertical force of three
walking trials during the midstance phase of gait, 560 N.
Figure 4 illustrates the resulting knee forces with 45% of
the total force, 252 N, applied to the lateral side and 55%,
308 N, applied to the medial side (Zhao et al. 2007). As indi-
cated in Sect. 3, we neglect the body forces of the tibia and
assume that shear forces acting on the tibia are negligible
because of the aligning action of the articular cartilage in

contact with the subchondral bone. We apply zero Dirichlet
boundary conditions to the nodes at the distal end of the tibia.

To quantify regional density variations and to validate
our model, we adopt the region of interest method (Hulet
et al. 2002) and evaluate the local bone mineral density,
BMD, in fourteen equal-sized regions along the tibial width,
see Fig. 4. The subject-specific local bone mineral density
in these fourteen regions is automatically extracted from
the DEXA scan. The computationally predicted density is
computed from gray-scaled bone density profiles by aver-
aging the density values of the approximately 1,000 pixels
within each region using Matab. The bone mineral den-
sities of the lateral and medial tibial plateaus are identi-
fied as regional averages over three neighboring regions,
BMDlat = [BMD2 + BMD3 + BMD4 ]/3 and BMDmed =
[BMD11 + BMD12 + BMD13 ]/3, see Hulet et al. (2002).

6.1 Two-dimensional density prediction

To demonstrate the convergence of the algorithm, we first
explore the evolution of the mass source R0, which is the
driving force for density changes, see Fig. 5. Since we
start with an initially homogeneous density distribution, we
observe the largest deposition of bone underneath the loaded
areas, shown in red, while unloaded areas undergo bone
resorption, shown in blue. As time progresses, from left to
right, the bone density changes such that the strain energy[
ρ0/ρ

∗
0

]n −m
ψ0 converges toward the biological stimulus

ψ∗0 . At biological equilibrium, right, strain energy and bio-
logical stimulus are identical,

[
ρ0/ρ

∗
0

]n −m
ψ0 = ψ∗0 , the

density source R0 vanishes and the density ρ0 undergoes no
further changes.

The heterogeneous mass source generates a heteroge-
neous density profile which is shown in Fig. 6. As time
progresses, from left to right, the bone density increases in
areas of a high mass source R0, underneath the loading, until
the density profile has converged. At biological equilibrium,
right, the density ρ0 is distributed such that the bone pro-
vides optimal structural support for forces induced during
gait. The final density profile displays qualitatively similar
characteristics as the subject-specific bone mineral density
profile obtained from the DEXA scan shown in Fig. 1.

While a qualitative validation can be used to gain a general
understanding of the density profile in response to loading, a
quantitative approach is necessary for a comprehensive val-
idation. Figure 9 shows the quantitative comparison of the
region of interest method applied to both the Dual-Energy
X-ray Absorptiometry scan and the two-dimensional den-
sity prediction. Squares and dotted lines indicate the experi-
mentally measured bone mineral density extracted from the
DEXA scan shown in Fig. 1. Circles and solid lines indicate
the computationally predicted bone density extracted from
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Fig. 5 Two-dimensional density prediction in the proximal tibia.
The color code indicates the evolution of the mass source R0, i.e.,
the driving force for density changes. As time progresses, from
left to right, the bone density changes such that the strain energy

[
ρ0/ρ

∗
0

]n −m
ψ0 converges toward the biological stimulus ψ∗0 . At

biological equilibrium, right, both values are identical, the den-
sity source R0 vanishes, and the density ρ0 remains unchanged

Fig. 6 Two-dimensional density prediction in the proximal tibia. The
color code indicates the evolution of the bone density ρ0. As time pro-
gresses, from left to right, the bone density increases in areas of a high
mass source R0, underneath the loading, until the density profile has

converged. At biological equilibrium, right, the density ρ0 is distrib-
uted such that the bone provides optimal structural support for forces
induced during gait

the two-dimensional simulation shown in Fig. 6. The two-
dimensional finite element model nicely captures all charac-
teristic features of the DEXA scan. In particular, we observe
two density peaks underneath the lateral and medial joint
load. For the DEXA scan, the lateral density is 1.5525 g/cm2

in region five, and for the simulation, it is 1.5622 g/cm2. For
the DEXA scan, the medial density is 1.7020 g/cm2 in region
twelve, and for the simulation, it is 1.7277 g/cm2. The higher
density in the medial region can be attributed to the loading
asymmetry with 55% of the gait load applied to medial side
and 45% to the lateral side, where the density is slightly lower.
The region in between the loaded areas, in particular region
eight, displays a characteristic low density with 1.1355 g/cm2

for the DEXA scan and 1.1252 g/cm2 for the simulation.

6.2 Three-dimensional density prediction

To demonstrate the feasibility of the proposed algorithm in
a three-dimensional setting, we predict the bone density dis-

tribution in a three-dimensional tibia model. Figure 8 shows
the resulting density profiles in the cross-sectional view, top,
and in the three-dimensional view, bottom. Similar to the
two-dimensional simulation, as time progresses, from left to
right, the bone density ρ0 increases in areas of high strain
energy

[
ρ0/ρ

∗
0

]n −m
ψ0 until it converges to its equilibrium

state. At biological equilibrium, right, the density ρ0 is dis-
tributed similarly to the two-dimensional case in Fig. 6 to
provide optimal structural support for forces induced dur-
ing gait. From the cross-sectional view, it is obvious that
our three-dimensional finite element discretization is much
coarser than the two-dimensional discretization. As a result,
the density profile is slightly less pronounced, but the overall
trends are clearly similar.

Finally, to quantitatively compare the density profile of
the three-dimensional simulation in Fig. 8 with the Dual-
Energy X-ray Absorptiometry scan in Fig. 1, we extract
the density distribution in the horizontal cross-section of
the proximal tibia using the region of interest method. The
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resulting regional variation of the bone mineral density in the
fourteen regions of interest is summarized in Fig. 9. Again,
the density profiles show a nice qualitative and quantitative
agreement. In the loaded lateral and medial regions, regions
five and twelve, the predicted bone mineral densities are
1.5593 g/cm2 as compared to 1.5525 g/cm2 for the DEXA
scan, and 1.6907 g/cm2 as compared to 1.7020 g/cm2 for the
DEXA scan. In the low density area of region eight, the com-
putationally predicted bone mineral density is 1.1316 g/cm2,
while the experimentally measured density is 1.1355 g/cm2.
While all these values agree nicely, we would like to point
out that the three-dimensional simulation predicts a slightly
wider lower density region between the two joint loads. This
discrepancy might be attributed to the fact that our three-
dimensional mesh is a generic mesh that was not created
based on the subject’s own geometry. In addition, the mesh
itself is relatively coarse in comparison to the subject-spe-
cific two-dimensional discretization. Nevertheless, we feel
that even the generic three-dimensional simulation displays
a good correlation with the experimentally measured density
profile.

6.3 Error analysis

To quantify the error of the computational simulation with
respect to the experimental measurement, we extract the bone
mineral densities of the lateral and medial plateaus. Recall
that these densities, BMDlat and BMDmed, are identified
as averages over three neighboring regions of interest, as
indicated in Fig. 4.

Table 3 displays the absolute values of the lateral and
medial bone mineral densities together with the errors of
the computational prediction with respect to the experi-
mental measurements. Errors of the subject-specific two-
dimensional model are 2.73% for the lateral side and 0.99%
for the medial side. Errors of the generic three-dimensional
model are slightly higher with 9.33% at the lateral side and
3.99% at the medial side.

A common metric to characterize the response to loading
asymmetry is the medial-to-lateral density ratio. This ratio
is 1.279 for the DEXA scan, 1.327 for the two-dimensional
model, and 1.122 for the three-dimensional model. Overall,
the computationally predicted densities of the lateral and
medial tibial plateaus are in excellent agreement with the
experimental measured density values of the DEXA scan.

6.4 Potential limitations

While the density predictions in the fourteen regions of inter-
est agree exceptionally well with our experimental measure-
ments, the agreement in other regions is reasonable, but
less strong. For example, lateral and medial to the fourteen
regions, both models underestimate the local bone density

Table 3 Comparison of experimental measurement and computational
predictions in terms of bone mineral densities of lateral and medial pla-
teaus, BMDlat and BMDmed. Errors of the computational predictions
are less than 3% for the two-dimensional model, and less than 10% for
the three-dimensional model. For all three approaches, the medial-to-
lateral density ratio M:L ranges from 1.13 to 1.33

DEXA 2d FEM 2d error 3d FEM 3d error

[ g/cm2] [ g/cm2] [%] [ g/cm3] [%]
BMDlat 1.268 1.233 2.73 1.384 9.33

BMDmed 1.621 1.637 0.99 1.556 3.99

DEXA 2d FEM 2d error 3d FEM 3d error

[–] [–] [%] [–] [%]

M:L-ratio 1.279 1.327 3.83 1.122 12.18

Fig. 7 Regional variation of bone mineral density in fourteen regions
of interest. Squares and dotted lines indicate the experimentally mea-
sured bone mineral density extracted from the Dual-Energy X-ray
Absorptiometry scan shown in Fig. 1. Circles and solid lines indicate the
computationally predicted bone density extracted from the two-dimen-
sional simulation shown in Fig. 6

with values of 0.5 g/cm2 or less, indicated through the dark
blue colors in Figs. 6, 7, 8, and 9. We suggest that these dis-
crepancies can be explained by the following limitations of
the model.

Firstly, we have assumed that the bone possesses similar
material properties in every element. In reality, the collagen
matrix in the subchondral bone is far from uniform in terms of
its material properties. For more detailed studies, we recom-
mend to use a finer mesh in which the outer layer is modeled
as cortical bone, while all internal elements are modeled as
trabecular bone. Ideally, the cortical bone layer would then
have a higher initial density compared to its internal coun-
terpart and its density would not be allowed to change over
time.

Secondly, we have simplified the tibiofemoral loading
through two representative forces acting on a single medial
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Fig. 8 Three-dimensional density prediction in the proximal tibia. The
color code indicates the evolution of the bone density ρ0. As time
progresses, from left to right, the bone density increases in areas of
high strain energy

[
ρ0/ρ

∗
0

]n −m
ψ0 until it has converged. At bio-

logical equilibrium, right, the density ρ0 is distributed such that the
bone provides optimal structural support for forces induced during gait.
Density evolution is displayed in the cross-sectional view, top, and in
the three-dimensional view, bottom

Fig. 9 Regional variation of bone mineral density in fourteen regions
of interest. Squares and dotted lines indicate the experimentally mea-
sured bone mineral density extracted from the Dual-Energy X-ray
Absorptiometry scan shown in Fig. 1. Circles and solid lines indicate
the computationally predicted bone density extracted from the cross-
sectional view of the three-dimensional simulation shown in Fig. 8, top

and lateral node each. However, in reality, the articular carti-
lage interface between the femur and tibia can be strained, the

loading can shift in location, and, most importantly, spread
over an entire area. We recommend further investigations to
precisely specify the relevant types of loading and points of
action.

Thirdly, we have neglected forces from muscles, ten-
dons, and the tibiofemoral joint. During the swing and stance
phases, the hamstrings and the quadriceps femoris flex, and
exert contractile forces on the tibiofemoral joint, which indi-
rectly add loading to the subchondral bone. Integrating the
force contributions from the surrounding tissues would likely
improve the validity of the model. Lastly, for the finite
element boundary conditions, we have assumed that the
subchondral bone was in complete isolation. A more accurate
model would include a finite contact region with the prox-
imal fibula and ideally mimic the in vivo loading situation
through an elastic foundation.

In addition to these technical limitations, our current
model only accounts for mechanical factors as driving forces
for density adaptation, entirely neglecting biochemical fac-
tors, age, gender, race, or family history. From a clinical point
of view, density adaptation and bone fracture are multifacto-
rial processes, which cannot be characterized by bone min-
eral density alone. We would like to reiterate though, that
at this stage, our model is not meant to be a diagnostic tool
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for osteoporosis or fracture risk, but rather a research tool to
provide insight into changes in density profiles in response
to mechanical loading.

Overall, the present model shows promise in predict-
ing medial and lateral densities, but offers room for further
improvement. Crucial input parameters such as the initial
density, the amount of loading, and the loading locations are
constructed to be controllable. Therefore, the model can be
easily extended to predict bone mineral densities in subjects
with different loading conditions such as obese individuals
or high powered athletes.

7 Discussion

The goal of this manuscript was to explore the potential of
two- and three-dimensional finite element models to pre-
dict the bone density distribution in the proximal tibia in
response to gait-induced loading. This work was motivated
by the hypothesis that cyclic dynamic loading during gait
does significantly impact the subchondral bone density. This
phenomenon has been thoroughly investigated in the past
through various clinical trials, mainly focussing on the effects
of osteoarthritis. However, none of these trials has used
finite element models as predictors. In a comprehensive bone
density analysis, we have initiated a multi-faceted series of
studies including gait analysis, Dual-Energy X-ray Absorp-
tiometry, bone mineral density analysis, and two- and three-
dimensional finite element analyses to integrate data from
multiple sources.

Using the theory of open system thermodynamics, we
have designed a stable and robust finite element framework
in which heterogeneous density profiles in hard biological
tissues evolve naturally in response to mechanical over or
underload. To characterize the critical forces in the tibiofem-
oral joint, we have performed a subject-specific gait analy-
sis using an inverse dynamics approach. We have imported
the resulting medial and lateral forces during the midstance
phase of gait into a fully nonlinear finite element-based den-
sity analysis.

To validate our computational model, we have taken a
Dual-Energy X-ray Absorptiometry scan, from which we
have directly created a two-dimensional subject-specific geo-
metric model of the proximal tibia. For the three-dimensional
simulation, we have generated a generic geometric model
from a magnetic resonance image of a randomly selected
adult right knee from our data base. We have demonstrated
an excellent qualitative agreement of the computationally
predicted density profiles with the experimentally measured
bone mineral density distribution. To demonstrate the quan-
titative agreement of the predicted and measured density
profiles, we have adopted the region of interest method and

extracted discrete density values using standard and custom-
designed image analysis tools.

Overall, the computationally predicted density profiles
have displayed errors of less than 3% for the two-dimensional
simulation and of less than 10% for the three-dimen-
sional simulation. In summary, we believe that the pro-
posed computational method has a tremendous potential
to identify changes in bone mineral density in response to
altered mechanical loading. As such, our framework has
the potential to accurately address the complex interactions
between ambulatory loads and tissue changes, and improve
the long-term success of possible treatment options for
chronic diseases such as osteoarthritis on a patient-specific
basis.
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