Our brain is not only our softest, but also our least well-understood organ. Floating in the cerebrospinal fluid, embedded in the skull, it is almost perfectly isolated from its mechanical environment. Not surprisingly, most brain research focuses on the electrical rather than the mechanical characteristics of brain tissue. Recent studies suggest though, that the mechanical environment plays an important role in modulating brain function. Neuromechanics has traditionally focused on the extremely fast time scales associated with dynamic phenomena on the order of milliseconds. The prototype example is traumatic brain injury where extreme loading rates cause intracranial damage associated with a temporary or permanent loss of function. Neurodevelopment, on the contrary, falls into the slow time scales associated with quasi-static phenomena on the order of months. A typical example is cortical folding, where compressive forces between gray and white matter induce surface buckling. To understand the role of mechanics in neuroanatomy and neuromorphology, we begin this course by dissecting mammalian brains and correlate our observations to neurophysiology. We discuss morphological abnormalities including lissencephaly and polymicrogyria and illustrate their morphological similarities with neurological disorders including schizophrenia and autism. Then, we address the role of mechanics during brachycephaly, plagiocephaly, tumor growth, and hydrocephalus. Last, we explore the mechanics of traumatic brain injury with special applications to shaken baby syndrome.
Syllabus

Focus Neuroanatomy / Dissection
Mon 17/06 14:00-15:30 Introduction to Brain Anatomy
Tue 18/06 08:30-10:00 Dissecting Brains - Kinematics
Wed 19/06 14:00-15:30 Brain Anatomy - Group Presentations

Focus Neuromechanics / Elasticity
Mon 17/06 16:00-17:30 Introduction to Brain Mechanics
Tue 18/06 10:30-12:00 Brain Mechanics in 1D – Elasticity of Neurons
Wed 19/06 16:00-17:30 Brain Mechanics in 3D – Elasticity of the Brain

Focus Neurodevelopment / Growth
Mon 24/06 14:00-15:30 Brain Growth in 1D – Growing Axons
Mon 24/06 16:00-17:30 Brain Growth in 3D – Brain Development

Focus Neuropathology / Damage
Tue 25/06 08:30-10:00 Brain Dynamics in 1D - Diffuse Axonal Injury
Tue 25/06 10:30-12:00 Brain Dynamics in 3D - Traumatic Brain Injury

Focus Neurosurgery / Swelling
Wed 26/06 14:00-15:30 Brain-Skull Interaction – Tumors and Craniosynostosis
Wed 26/06 16:00-17:30 Brain-Fluid Interaction – Hydrocephalus and Craniectomy
Focus Neuroanatomy / Dissection

Mon 17/06 Introduction to Brain Anatomy
14:00-15:30 Understanding the basics of brain anatomy
Your brain by the numbers
Important features for mechanical analysis
Brain imaging in vivo – Magnetic resonance imaging

Tue 18/06 Dissecting Brains - Kinematics
08:30-10:00 Understanding brain anatomy through dissection
Coronal, transverse, and sagittal sections
Frontal, parietal, occipital, and temporal lobes
Ventricles and cerebrospinal fluid

Wed 19/06 Brain Anatomy - Group Presentations
14:00-15:30 Understanding the brain as a bi-material
Gray and white matter
Cortical thickness, gyri and sulci
Gyral wavelength and gyrification indices

Focus Neuromechanics / Elasticity

Mon 17/06 Introduction to Brain Mechanics
16:00-17:30 Understanding the basics of brain mechanics
Slow time scales – Brain development
Fast time scales – Traumatic brain injury
Role of mechanics in classical pathologies

Tue 18/06 Brain Mechanics in 1D – Elasticity of Neurons
10:30-12:00 Understanding the brain as a collection of neurons
Introduction to 1D kinematics, equilibrium, constitutive equations
Notion of deformation, stretch, strain, stress, stiffness
Brain imaging in vivo – Diffusion Tensor MRI

Wed 19/06 Brain Mechanics in 3D – Elasticity of the Brain
16:00-17:30 Understanding the brain as a multiscale material
Introduction to 3D kinematics, equilibrium, constitutive equations
Notion of deformation, deformation gradient, strain, stress
Brain testing ex vivo - Compression, shear, indentation
Brain testing in vivo – Magnetic Resonance Elastography
Focus Neurodevelopment / Growth

Mon 24/06
14:00-15:30
Brain Growth in 1D – Growing Axons
Understanding axons as living matter
Axonal tension
Chronic axon elongation
Axon testing ex vivo – Towed growth

Mon 24/06
16:00-17:30
Brain Growth in 3D – Brain Development
Understanding instabilities
Competition between compression and bending
Critical wavelength, cortical thickness, stiffness, and growth
Physiological and pathological development
Lissencephaly and polymicrogyria, Craniosynostosis

Focus Neuropathologies / Damage

Tue 25/06
08:30-10:00
Brain Dynamics in 1D - Diffuse Axonal Injury
Understanding axonal damage and rupture
Notion of stretch rate, strain rate, stress
Introduction to damage mechanics
Diffuse Axonal Injury

Tue 25/06
10:30-12:00
Brain Dynamics in 3D - Traumatic Brain Injury
Understanding brain damage and injury
Introduction to damage mechanics
Notion of velocity, velocity gradient, strain rate, stress
Shaken baby syndrome, traffic accidents, blast impact, sport injuries
Chronic Traumatic Encephalopathy

Focus Neurosurgery / Swelling

Wed 26/06
14:00-15:30
Brain-Skull Interaction – Tumors and Craniosynostosis
Understanding changes to the mechanical environment
Opening the brain - Craniosynostosis
Removing part of the brain - Brain Tumors
BBC Documentary - Neurosurgeons at Oxford Hospital

Wed 26/06
16:00-17:30
Brain-Fluid Interaction – Hydrocephalus and Craniectomy
Understanding the cerebrospinal fluid
Abnormal accumulation of cerebrospinal fluid
Increase in intracranial pressure and swelling
Decompressive Craniectomy