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A hyperelastic constitutive model for compression
stiffening applicable to brain and fat tissues

L. Angela Mihai, LiKang Chin, Paul A. Janmey, Alain Goriely

The objective of this final project is to demonstrate that, during the past ten weeks,
you have learned to read the state of the art mechanics literature. Paul Janmey and
Alain Goriely, two leading scientists in continuum mechanics, have recently published
a manuscript that discusses the constitutive modeling of extremely soft materials.

Read the publication and try to understand what it is all about. You do not necessarily
need to understand all the equations. The most important part for this project is Section 2.

1 Summarize the manuscript in less than 200 words.

2 Reformulate the free energy functions W(λ1, λ2, λ3) for the Neo-Hookean, Mooney-
Rivlin, and Fung materials in Table 1 in terms of the invariants of b as W(Ib

1 , Ib
2 , Ib

3).
Remember that for an incompressible material, J = 1, and thus λ3 = 1/(λ1λ2).

3 For the free energy functions W(Ib
1 , Ib

2 , Ib
3) of the Neo-Hookean, Mooney-Rivlin,

and Fung materials (from 2), calculate the derivatives β1 = 2 ∂W/∂I1 and β−1 =
−2 ∂W/∂I2.

4 For the Neo-Hookean, Mooney-Rivlin, and Fung derivatives (from 3), derive the
Cauchy stress using equationσ = −pI +β1b +β−1b−1 from the manuscript.

5 For the case of uniaxial tension or compression in equation (2.1), derive the defor-
mation gradient F = ∂x/∂X, the right and left Cauchy Green deformation tensors C
and b, and the inverse b−1. Verify b with the left Cauchy Green deformation tensor
B in the manuscript.

6 For the case of finite shear superposed on axial stretch in equation (2.5), derive the
deformation gradient F = ∂x/∂X, and show that the deformation is volume pre-
serving.

7 For the deformation gradient F (from 6), derive the right and left Cauchy Green
deformation tensors C and b, verify b with the left Cauchy Green deformation ten-
sor B in the manuscript, and show that the first and third invariants of C and b are
identical, i.e., Ib

1 = IC
1 and Ib

3 = IC
3 .

8 For the Neo-Hookean and Mooney-Rivlin materials, use σ (from 4) with b and b−1

(from 5) to plot σ22 as a function of a using the parameters C, C1, and C2 for brain
tissue from Table 2. You can assume p = 0 and plot the graphs either by hand or
computationally. Comment on your results.

9 Review the publication with the help of the attached spreadsheet. Use your com-
mon sense to answer the questions. There are no wrong answers, we will not take
off points as long as you can justify your opinion.
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In some soft biological structures such as brain and fat tissues, strong exper-

imental evidence suggests that the shear modulus increases significantly

under increasing compressive strain, but not under tensile strain, whereas the

apparent Young’s elastic modulus increases or remains almost constant

when compressive strain increases. These tissues also exhibit a predominantly

isotropic, incompressible behaviour. Our aim is to capture these seemingly

contradictory mechanical behaviours, both qualitatively and quantitatively,

within the framework of finite elasticity, by modelling a soft tissue as a homo-

geneous, isotropic, incompressible, hyperelastic material and comparing our

results with available experimental data. Our analysis reveals that the Fung

and Gent models, which are typically used to model soft tissues, are inadequate

for the modelling of brain or fat under combined stretch and shear, and so are

the classical neo-Hookean and Mooney–Rivlin models used for elastomers.

However, a subclass of Ogden hyperelastic models are found to be in excellent

agreement with the experiments. Our findings provide explicit models suitable

for integration in large-scale finite-element computations.
1. Introduction
Obtaining reliable constitutive models for the behaviour of tissues under loads is

of the utmost importance when studying the response and evolution of organs in

physiological and pathological conditions. For instance, the computational analy-

sis of traumatic brain injury owing to shocks or blast waves in sports, combat or

accidents relies on large finite-element codes based on the constitutive properties

of brain tissues. Similarly, an understanding of how brain tumours change the

mechanical and neurological environment during growth depends on the mech-

anical responses of both healthy tissue and tumours [1]. The response of adipose

tissue to external loads is also a growing area of interest in clinical research,

for example in treating patients with impaired mobility and in the pharmaceutical

industry, particularly for the design of needle-free drug-delivery systems [2].

Recent experimental evidence [3–5] shows that soft biological tissues such as

brain, gliomas, liver and fat have some unusual mechanical properties under

loads, namely

(i) the shear modulus increases sharply as compression in the direction

orthogonal to the shear direction increases;

(ii) the shear modulus remains almost constant or may decrease as tension

in the direction orthogonal to the shear direction increases; and

(iii) the elastic modulus increases or remains almost constant when compression

increases.

In particular, the shear modulus of normal brain can be increased nearly four

times by compressive stresses. In addition, although at low strains, glioma brain

tumours have similar elastic moduli to normal brain tissue (unlike other tumour

types arising in breast tissue, for example [6]), at large strains, glioma tissue
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Figure 1. Graphical illustration of (a) brain and (b) fat tissues.
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stiffens more strongly under compression than normal brain.

However, while the shear modulus increases significantly

when axial strain increases, the elastic modulus increases

only slightly or not at all under increasing axial strain.

During experimental tests, tissue samples exhibited a predomi-

nantly isotropic behaviour and their volume was reported to

remain virtually constant.

Our aim is to capture these seemingly contradictory

mechanical behaviours, both qualitatively (theoretically) and

quantitatively (numerically), within the framework of finite elas-

ticity, by modelling a soft tissue as a homogeneous, isotropic,

incompressible, hyperelastic material. First, we demonstrate

analytically that, in large strain deformations, conditions

(i)–(iii) can be satisfied simultaneously by Mooney–Rivlin

models, but not by the neo-Hookean, Fung and Gent models.

The neo-Hookean model can be derived from first principles

and is suitable for materials with entropic elasticity and a

Gaussian distribution of chains with quadratic strain energy.

While the neo-Hookean model can be seen as a general

second-order approximation of a strain–energy density, the

Mooney–Rivlin model for incompressible systems is its third-

order approximation and is known to be better suited than the

neo-Hookean model to describe shear deformations in elasto-

mers [7,8]. The Fung model was developed initially to capture

the response of tissues with a high content of collagen fibres,

such as skin and arterial walls [9,10]. This model exhibits a typical

dramatic strain-stiffening response in uniaxial loading character-

izing the extension of stiff crimpled collagen fibres. The Gent

model further penalizes this extension by limiting the strain to

a finite value, similar to worm-like chain models used in polymer

physics [11]. As such, both the Gent and Fung models are suitable

for tissues that derive their elasticity from a mixture of a soft elas-

tic matrix and stiff fibres. However, aggregates of cells found in

brain and in fat tissues are approximately equiaxed in structure

with a large lipid content, and this accounts for their almost iso-

tropic, incompressible properties, which likely originate from

their cellular structure rather than fibres [4,12–15] (figure 1 and

appendix A).

In this study, we provide a set of model examples for which

we compare the values of the shear modulus under increasing

compression or tension with experimental data for brain and

fat tissues. The viscoelasticity of brain and adipose tissues

was measured following the protocol described in [4]. The

dynamic shear storage modulus G0 was measured as a function

of time for increasing tensile or compressive strain (from 0%

to 40%). Details are given in appendix A.

A hyperelastic constitutive material has a unique stress–

strain relationship, independent of strain rate. However, the

stress–strain response for viscoelastic materials changes

with strain rate, and a strain–energy density function does

not exist for these materials. Nonetheless, for many soft

tissues, the shape of the nonlinear stress–strain curve is typi-

cally invariant with respect to strain rate. In this case, at fixed

strain rate, the shear modulus may be captured by a non-

linear hyperelastic model (an example of this approach for

fat tissues can be found in [16]).

The usual practice in constitutive modelling is to fit

uniaxial data obtained under controlled compression, and less

commonly under tension, with standard material models.

This is due to the general experimental (and partly analytical)

limitations to carry out proper assessment of stresses and

deformations in multiple loading situations. This approach

has been particularly successful for tissues that operate mostly
under axial loading conditions, such as tendons or ligaments.

However, soft tissues such as fat or brain, operate in

highly varying and complex loading environments and exhibit

responses that cannot be easily modelled by such an approach.

The elasticity of these materials can be probed by subjecting

samples to multiple loadings and, indeed, our study of the

shear modulus under combined stretch and shear demonstrates

that different constitutive models behave very differently under

combined deformation, even though some of them may

respond very similarly in axial deformation alone.

From our numerical results, we infer that the shear mod-

ulus for the Mooney material is too small compared with the

experimental values at similar strains, but appropriate Ogden

models are found which are in excellent agreement with

the experiments, and thus conditions (i)–(ii) are satisfied

by the corresponding shear modulus. The newly identified

models are robust and suitable for use in large-scale finite-

element computations. Furthermore, for the Mooney, Fung,

Gent and Ogden models analysed here, the elastic modulus

increases or remains almost constant as compression increases,

and therefore, condition (iii) is satisfied numerically, whereas

for the neo-Hookean material, this modulus decreases under

increasing compression.

For the hyperelastic models under consideration, the

associated strain energy functions and their ability to satisfy

the conditions (i)–(iii), either theoretically or numerically,

are summarized in table 1. The numerical results are shown

at a glance in figures 3 and 4.
2. Nonlinear elastic modulus and shear modulus
relations

The homogeneous (affine) deformations analysed here are uni-

versal and controllable in the sense that they can be maintained

in every homogeneous, incompressible, isotropic, elastic

material by application of suitable surface tractions [22–26].

If the material is described by a strain energy function W,

the associated Cauchy (true) stress has the Rivlin–Ericksen

representation

s ¼ �pIþ b1Bþ b�1B�1,

where p is the arbitrary hydrostatic pressure, B is the left

Cauchy–Green strain tensor with the principal invariants I1,



Table 1. Hyperelastic material models and their mechanical behaviour.

material model strain energy function Wðl1, l2, l3Þ

conditions (i) – (iii)
satisfied (

p
)/

failed (3)

neo-Hookean [17] Cðl2
1 þ l2

2 þ l2
3 � 3Þ=2

C independent of deformation

(i)�; (ii)
p

; (iii) �

Mooney – Rivlin

[18]

C1ðl2
1 þ l2

2 þ l2
3 � 3Þ=2þ C2ðl�2

1 þ l�2
2 þ l�2

3 � 3Þ=2

C1, C2 independent of deformation

(i)
p

; (ii)
p

; (iii)
p

Fung [19] C½aðl2
1 þ l2

2 þ l2
3 � 3Þ þ eaðl

2
1þl2

2þl2
3�3Þ � 1�=ð2aÞ

C, a independent of deformation

(i)
p

; (ii) �; (iii)
p

Gent [20] �C ln½1� bðl2
1 þ l2

2 þ l2
3 � 3Þ�=ð2bÞ

C, b independent of deformation

(i)
p

; (ii) �; (iii)
p

OgdenN [21]
PN

p¼1 Cpðl2mp

1 þ l
2mp

2 þ l
2mp

3 � 3Þ=ð2mpÞ
Cp, mp independent of deformation

(i)
p

; (ii)
p

; (iii)
p

X

Y

1

1

a

ka

Figure 2. Schematic of cross section of unit cube (dashed line) deformed by
combined stretch and shear (solid line).
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I2, I3 and

b1 ¼ 2
@W
@I1

and b�1 ¼ �2
@W
@I2

,

are the material response coefficients. Equivalently, in terms of

the principal stretches l1, l2, l3

b1 ¼ l�1
1

@W
@l1
þ l�1

2

@W
@l2

and b�1 ¼ l3
1

@W
@l1
þ l3

2

@W
@l2

:

Henceforth, we assume that these material responses are

consistent with the Baker–Ericksen (BE) inequalities stating

that the greater principal stress occurs in the direction of the greater
principal stretch, and the pressure–compression (PC) inequal-

ities stating that each principal stress is a pressure or a tension
according as the corresponding principal stretch is a contraction or
an elongation [27–29].

2.1. The elastic modulus in finite tension or
compression

We first consider a unit cube of incompressible hyperelastic

material subject to the uniaxial tension or compression in

the second direction

x ¼ 1ffiffiffi
a
p X, y ¼ aY and z ¼ 1ffiffiffi

a
p Z, ð2:1Þ

where (x, y, z) and (X, Y, Z) are the Cartesian coordinates for

the current and the reference configuration, respectively, and

a . 1 (tension) or 0 , a , 1 (compression) is constant.

For the deformation (2.1), the left Cauchy–Green strain

tensor takes the form

B ¼
1=a 0 0
0 a2 0
0 0 1=a

2
4

3
5,

and the non-zero components of the associated Cauchy

stress are

sxx ¼ szz

syy ¼ szz þ a2 � 1

a

� �
b1 �

b�1

a

� �

szz ¼ �pþ b1

a
þ ab�1:
We define the nonlinear elastic modulus in the second direc-

tion as the ratio between the Cauchy (true) stress syy and

the logarithmic (true) strain (the sum of all the small strain

increments) ln B1=2
yy [24, p. 118]

EðaÞ ¼
syy

ln B1=2
yy

: ð2:2Þ

If sxx ¼ szz ¼ 0, then (2.2) takes the form

EðaÞ ¼ 1

ln a
a2 � 1

a

� �
b1 �

b�1

a

� �
, ð2:3Þ

and if sxx ¼ szz = 0, then by the PC inequalities, szz , 0

when 1/a , 1, and szz . 0 when 1/a . 1, hence

EðaÞ ¼ szz

ln a
þ 1

ln a
a2 � 1

a

� �
b1 �

b�1

a

� �

,
1

ln a
a2 � 1

a

� �
b1 �

b�1

a

� �
: ð2:4Þ
2.2. The shear modulus for finite shear superposed on
axial stretch

We further examine a unit cube material sample deformed by

the combined stretch and shear

x ¼ 1ffiffiffi
a
p X þ kaY, y ¼ aY, z ¼ 1ffiffiffi

a
p Z, ð2:5Þ
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Figure 3. Brain data and models fit. Left: neo-Hookean, Mooney – Rivlin, Fung and Gent models. Right: Ogden4, Ogden6, Ogden8 models. (a) Shear modulus m
compared with experimental data for brain tissue at 2% shear superposed on up to 40% compression or tension; (b) the associated relative errors and (c) the elastic
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where (x, y, z) and (X, Y, Z) are the Cartesian coordinates for

the deformed and the reference configuration, respectively,

and a and k are positive constants representing the axial

stretch and the shear parameter, respectively (figure 2).

For the deformation (2.5), the left Cauchy–Green strain

tensor takes the form

B ¼
1=aþ k2a2 ka2 0

ka2 a2 0
0 0 1=a

2
4

3
5,
and the non-zero components of the associated Cauchy

stress are

sxx ¼ szz þ b1k2a2

syy ¼ szz þ a2 � 1

a

� �
b1 �

b�1

a

� �
þ b�1k2a

szz ¼ �pþ b1

a
þ ab�1,

sxy ¼ ka2 b1 �
b�1

a

� �
:
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For the deformed cube, the shear strain on the inclined

faces and the associated shear traction are, respectively

Bt ¼
k

að1þ k2Þ and st ¼
k

að1þ k2Þ b1 �
b�1

a

� �
:

We define the nonlinear shear modulus as the ratio bet-

ween the shear traction st and the logarithmic shear strain
ln(Bt þ 1), i.e.

mðk, aÞ ¼ st

lnðBt þ 1Þ ¼
Bt

lnðBt þ 1Þ b1 �
b�1

a

� �
: ð2:6Þ

Then, the shear modulus (2.6) is independent of the hydro-

static pressure –p and is positive if and only if b1 2 b21/a . 0.



Table 2. The non-zero parameters for hyperelastic models fitted to shear
modulus data for brain tissue at 2% shear superposed on up to 40%
compression or tension.

material model non-zero parameter values

neo-Hookean C ¼ 333.28

Mooney – Rivlin C1 ¼ 0.28, C2 ¼ 333

Fung C ¼ 166.64, a ¼ 2.4974

Gent C ¼ 333.28, b ¼ 0.9918
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When the shear strain is small, the shear modulus (2.6)

takes the form

m0ðaÞ ¼ lim
k!0

m ¼ ~b1 �
~b�1

a
, ð2:7Þ

where

~b1 ¼ lim
k!0

b1, ~b�1 ¼ lim
k!0

b�1:

Assuming that szz ¼ 0, we also define

N0ðaÞ ¼ lim
k!0

syy ¼ a2 � 1

a

� �
~b1 �

1

a
~b�1

� �
,

and obtain

N0

m0

¼ a2 � 1

a
: ð2:8Þ

Therefore, as the axial stretch a increases, the magnitude of

the normal force N0 relative to the shear modulus m0 also

increases. This is a universal relation [30], which holds inde-

pendently of the material responses b1 and b21, and is

analogous to Rivlin’s formula for a cylinder deformed by

combined stretch torsion [26, p. 192]. Then, by (2.3) and (2.8)

E
m0

¼ 1

ln a
a2 � 1

a

� �
, ð2:9Þ

i.e. the ratio between the elastic modulus E and the shear

modulus m0 is also independent of the material parameters,

and E/m0! 3 as a! 1.

If szz = 0, then by the PC inequalities, szz , 0 when

1/a , 1, and szz . 0 when 1/a . 1. In this case

N0ðaÞ ¼ lim
k!0

szz þ a2 � 1

a

� �
~b1 �

~b�1

a

� �
,

hence

N0

m0

, a2 � 1

a
if a . 1 and

N0

m0

. a2 � 1

a
if a , 1:

Then, by (2.4)

E
m0

,
1

ln a
a2 � 1

a

� �
:

2.3. The behaviour of nonlinear hyperelastic models
For the hyperelastic materials listed in table 1, we examine the

elastic modulus (2.3) and the shear modulus (2.7) as the mag-

nitude of the compressive or tensile strain b ¼ ln a increases.

In view of the subsequent comparison with experimental

data, we restrict our attention to the case when b [ ð�0:5, 0:5Þ:

— For the neo-Hookean model, the shear modulus (2.7) is

equal to

m0 ¼ C

and is independent of strain. Hence, condition (ii) is satis-
fied, but not (i).

Applying (2.9) the corresponding elastic modulus takes

the form

E ¼ C
b
ðe2b � e�bÞ ð2:10Þ

and increases as b [ ð�0:5, 0Þ increases. Thus, condition
(iii) is not satisfied.
— For the Mooney–Rivlin model, the shear modulus takes

the form

m0 ¼ C1 þ C2e�b,

and, if C1 . 0 and C2 . 0, then this modulus decreases as

b increases. Hence, conditions (i) and (ii) are both valid.

— By (2.9), the elastic modulus is equal to

E ¼ 1

b
e2b � e�b� �

C1 þ C2e�b� �
ð2:11Þ

and, if 0 , C1�C2, then this modulus decreases as

b [ ð�0:5, 0Þ increases. Thus, condition (iii) is also valid.

— For the Fung model:

m0 ¼ C 1þ eaðe
2bþ2e�b�3Þ

h i

and, if C . 0 and a . 0, then this modulus decreases as

b [ ð�0:5, 0Þ increases and increases as b [ ð0, 0:5Þ
increases. Hence, condition (i) is satisfied, but not (ii).
For this model, by (2.9), the elastic modulus is

E ¼ C
b
ðe2b � e�bÞ½1þ eaðe

2bþ2e�b�3Þ�, ð2:12Þ

and there exists b0 [ ð�0:5, 0Þ, such that this modulus

decreases as b [ ð�0:5, b0Þ increases and increases as

b [ ðb0, 0Þ increases. Thus, condition (iii) is not satisfied.

— Similarly, for the Gent model:

m0 ¼
C

½1� bðe2b þ 2e�b � 3Þ�

and, if C . 0 and b . 0, then this modulus decreases as

b [ ð�0:5, 0Þ increases and increases as b [ ð0, 0:5Þ
increases. Hence, condition (i) is satisfied, but not (ii).
By (2.9), the corresponding elastic modulus is

E ¼ Cðe2b � e�bÞ
b½1� bðe2b þ 2e�b � 3Þ� , ð2:13Þ

and there exists b0 [ ð�0:5, 0Þ, such that this modulus

decreases as b [ ð�0:5, b0Þ increases and increases as

b [ ðb0, 0Þ increases. Hence, condition (iii) is not satisfied.

— For the Ogden model:

m0 ¼ 1

~l
2

1 � ~l
2

2

XN

p¼0

Cp ~l
2mp

1 � ~l
2mp

2

� �
,

where

~l
2

1 ¼ lim
k!0

l2
1 ¼

e2b þ e�b þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðe2b þ e�bÞ2 � 4eb

q
2

,

~l
2

2 ¼ lim
k!0

l2
2 ¼

eb

~l
2

1

:



Table 3. The non-zero parameters for Ogden models fitted to shear modulus data for brain tissue at 2% shear superposed on up to 40% compression
or tension.

material
model non-zero parameter values

Ogden3 (brain) C1 ¼ 23543, m1 ¼ 1, C2 ¼ 22723, m2 ¼ 21, C3 ¼ 654, m3 ¼ 2

Ogden4 (brain) C1 ¼ 25877, m1 ¼ 1, C2 ¼ 25043, m2 ¼ 21, C3 ¼ 1161, m3 ¼ 2, C4 ¼ 501, m4 ¼ 22

Ogden5 (brain) C1 ¼ 234 399, m1 ¼ 1, C2 ¼ 218 718, m2 ¼ 21, C3 ¼ 14 509, m3 ¼ 2, C4 ¼ 2947, m4 ¼ 22, C5 ¼ 22349, m5 ¼ 3

Ogden6 (brain) C1 ¼ 1189, m1 ¼ 1, C2 ¼ 16 855, m2 ¼ 21, C3 ¼ 1444, m3 ¼ 2, C4 ¼ 210 108, m4 ¼ 22, C5 ¼ 2458, m5 ¼ 3,

C6 ¼ 1889, m6 ¼ 23

Ogden7 (brain) C1 ¼ 2187 150, m1 ¼ 1, C2 ¼ 291 970, m2 ¼ 21, C3 ¼ 109 290, m3 ¼ 2, C4 ¼ 23 200, m4 ¼ 22, C5 ¼ 233 290,

m5 ¼ 3, C6 ¼ 22290, m6 ¼ 23, C7 ¼ 4100, m7 ¼ 4

Ogden8 (brain) C1 ¼ 2639 530, m1 ¼ 1, C2 ¼ 2544 840, m2 ¼ 21, C3 ¼ 322 660, m3 ¼ 2, C4 ¼ 237 040, m4 ¼ 22, C5 ¼ 288 640,

m5 ¼ 3, C6 ¼ 257 830, m6 ¼ 23, C7 ¼ 10 150, m7 ¼ 4, C8 ¼ 6080, m8 ¼ 24

Table 4. The non-zero parameters for Ogden models fitted to shear modulus data for lean fat tissue at 3.5% shear superposed on up to 40% compression
or tension.

material
model non-zero parameter values

Ogden3 (lean) C1 ¼ 23882, m1 ¼ 1, C2 ¼ 22113, m2 ¼ 21, C3 ¼ 931, m3 ¼ 2

Ogden4 (lean) C1 ¼ 2342, m1 ¼ 1, C2 ¼ 4083, m2 ¼ 21, C3 ¼ 2418, m3 ¼ 2, C4 ¼ 21337, m4 ¼ 22

Ogden5 (lean) C1 ¼ 10 608, m1 ¼ 1, C2 ¼ 8054, m2 ¼ 21, C3 ¼ 24281, m3 ¼ 2, C4 ¼ 22048, m4 ¼ 22, C5 ¼ 679, m5 ¼ 3

Ogden6 (lean) C1 ¼ 225 361, m1 ¼ 1, C2 ¼ 227 961, m2 ¼ 21, C3 ¼ 8907, m3 ¼ 2, C4 ¼ 11 175, m4 ¼ 22, C5 ¼ 21227, m5 ¼ 3,

C6 ¼ 21914, m6 ¼ 23

Ogden7 (lean) C1 ¼ 2117 600, m1 ¼ 1, C2 ¼ 281 360, m2 ¼ 21, C3 ¼ 61 650, m3 ¼ 2, C4 ¼ 27 530, m4 ¼ 22, C5 ¼ 217 260,

m5 ¼ 3, C6 ¼ 23970, m6 ¼ 23, C7 ¼ 2000, m7 ¼ 4

Ogden8 (lean) C1 ¼ 2147 280, m1 ¼ 1, C2 ¼ 2111 070, m2 ¼ 21, C3 ¼ 75 640, m3 ¼ 2, C4 ¼ 41 560, m4 ¼ 22, m4 ¼ 220 890,

m5 ¼ 3, C6 ¼ 27610, m6 ¼ 23, C7 ¼ 2390, m7 ¼ 4, C8 ¼ 400, m8 ¼ 24
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For this model, a general conclusion about the monotoni-

city of the shear modulus cannot be drawn, and

particular cases need to be examined individually. We do

this in §3 where hyperelastic models are treated

numerically.

3. Numerical results
Here, we compare the mechanical performance of the neo-

Hookean, Mooney, Fung, Gent and Ogden materials described

above when fitted to available experimental data for the shear

modulus of brain and fat tissues. According to the experimen-

tal measurements, the shear modulus increases strongly under

increasing compression, whereas in tension, it remains almost

constant or decreases slightly at first, then begins to increase,

but much less than in compression. In particular, for brain

tissue, the shear modulus is essentially constant up to 10%

tensile strain, whereas for lean and obese fat, this modulus

appears almost constant up to 30% and 20% tensile strain,

respectively. The experimental data for brain and fat tissues

are marked by the (red) circles in the plots shown in

figures 3a and 4a, respectively.

The values of the constant parameters for the hyperelastic

models fitted to brain and fat data are recorded in tables 2–3
and tables 4–5, respectively. For the neo-Hookean, Mooney–

Rivlin, Fung and Gent models, all constant parameters were

fitted. For the Ogden models, the non-zero coefficients Cp

were fitted, whereas the corresponding exponents mp were

fixed. The fitting of the material parameters was performed

using a nonlinear least-squares procedure implemented

in Matlab (lsqnonlin.m). By this procedure, the following

(unconstrained) minimization problem was solved

min
c

Xn

i¼1

½Gðki, bi; cÞ � mi�
2,
where c ¼ (c1, c2, . . . cm) are the constant material parameters

to be identified, (bi, mi) are the pairs of data for the compres-

sive or tensile strain and the shear modulus, respectively, and

G(ki, bi; c) ¼ m(ki, ai) is the shear modulus defined by (2.6),

such that ai ¼ ebi is the stretch parameter, and the shear

strain is constant and small, viz. 0.02 for brain and 0.035 for

fat tissues, so we set ki ¼ 0.02ai and ki ¼ 0.035ai, respectively,

for all i ¼ 1, . . ., n.

In order to assess the accuracy with which the models

capture the mechanical behaviour measured by the exper-

iments, for each model, the relative error of the shear



Table 5. The non-zero parameters for Ogden models fitted to shear modulus data for obese fat tissue at 3.5% shear superposed on up to 40% compression
or tension.

material
model non-zero parameter values

Ogden3 (obese) C1 ¼ 212 779, m1 ¼ 1, C2 ¼ 26634, m2 ¼ 21, C3 ¼ 3181, m3 ¼ 2

Ogden4 (obese) C1 ¼ 6675, m1 ¼ 1, C2 ¼ 12 733, m2 ¼ 21, C3 ¼ 21036, m3 ¼ 2, C4 ¼ 24180, m4 ¼ 22

Ogden5 (obese) C1 ¼ 17 032, m1 ¼ 1, C2 ¼ 17 708, m2 ¼ 21, C3 ¼ 25876, m3 ¼ 2, C4 ¼ 25070, m4 ¼ 22, C5 ¼ 850, m5 ¼ 3

Ogden6 (obese) C1 ¼ 217 287, m1 ¼ 1, C2 ¼ 216 654, m2 ¼ 21, C2 ¼ 6706, m3 ¼ 2, C4 ¼ 7546, m4 ¼ 22, C5 ¼ 2968, m5 ¼ 3,

C6 ¼ 21826, m6 ¼ 23

Ogden7 (obese) C1 ¼ 2294 660, m1 ¼ 1, C2 ¼ 2177 230, m2 ¼ 21, C3 ¼ 165 320, m3 ¼ 2, C4 ¼ 56 730, m4 ¼ 22, C5 ¼ 249 180,

m5 ¼ 3, C6 ¼ 28000, m6 ¼ 23, C7 ¼ 6010, m7 ¼ 4

Ogden8 (obese) C1 ¼ 2169 310, m1 ¼ 1, C2 ¼ 251 570, m2 ¼ 21, C3 ¼ 106 260, m3 ¼ 2, C4 ¼ 22630, m4 ¼ 22, C5 ¼ 233 880,

m5 ¼ 3, C6 ¼ 7420, m6 ¼ 23, C7 ¼ 4340, m7 ¼ 4, C8 ¼ 21690, m8 ¼ 24
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moduli to the given data was also computed, as follows

ei ¼
jmðki, aiÞ � mij

mi
, i ¼ 1, � � �, n: ð3:1Þ

For the neo-Hookean, Mooney, Fung and Gent models

with constant parameters as indicated in table 2, the shear

moduli at 2% shear combined with up to 40% compression

or tension, and their relative errors (3.1) are plotted in

figure 3a,b, respectively. Because the shear strain is small,

the shear modulus m0 defined by (2.7) is capable of predicting

theoretically the corresponding mechanical behaviour of

these models under the combined deformation. For these

models, we further compute the elastic modulus E defined

by (2.3), and plot its values normalized to those at 5%

compression in figure 3c. Numerically

— For the neo-Hookean material, the computed shear mod-

ulus m defined by (2.6) is virtually constant, hence
condition (ii) is valid, but (i) is not. For this material also,

the relative values of the elastic modulus (2.10) plotted

in figure 3c decrease when compression increases, hence
condition (iii) is not valid. These results are all in agreement

with the theoretical findings for the neo-Hookean model.

— For the Mooney–Rivlin material, the shear modulus m

increases as compression increases and decreases as ten-

sion increases, thus conditions (i) and (ii) are both satisfied.

From the relative values of the elastic modulus plotted

in figure 3c, we also see that, for this material, the elastic

modulus (2.11) increases under increasing compression,

i.e. condition (iii) is also satisfied. These results are again

in agreement with the theoretical findings for the

Mooney model. Unfortunately, the numerical values of

the shear modulus attained by this model are much smal-

ler than those required by the experimental results for

brain tissue, as shown by the large relative error estimates,

hence Mooney materials, which have proved excellent

in describing elastomers and other materials with entropic

elasticity, are inadequate for the modelling of this tissue.

— For the Fung and the Gent materials, the respective shear

moduli m increase as compression increases, i.e. condition
(i) is satisfied, but because they also increase almost as fast

in tension as in compression, condition (ii) is not satisfied.

Moreover, the corresponding relative errors increase

rapidly as either compression or tension increases, hence,
these materials do not capture the required physical behav-

iour in either of these deformations. For these models also,

the monotonicity of the associated elastic modulus (2.12)

and (2.13) changes, albeit slowly, so that the computed

modulus remains almost constant before it increases as

compression increases. Hence, condition (iii) is, in fact,
satisfied numerically.

As the neo-Hookean, Mooney, Fung and Gent models fail

to agree with the experimental results for brain tissue under

combined stretch and shear, and similar results are shown

to hold experimentally for adipose tissue, we illustrate

numerically the behaviour of these material models in rap-

port to the brain data, but take these models no farther

when modelling fat tissues (table 6).

— For brain and fat tissues, we further determine six differ-

ent Ogden-type models, with the associated constant

parameters recorded in tables 3–5. In tables 3–5, the

OgdenN models have N non-zero coefficients Cp, whereas

the associated exponents mp are fixed. For these models,

conditions (i) and (ii) are both valid. See also figures 3a
and 4a. The relative errors recorded in tables 7–9 further

suggest that Ogden7 and Ogden8 are the most successful

in approximating the experimental data. Obviously,

these last models contain a large number of parameters

and are likely to over-fit the data. The purpose of includ-

ing these models is to demonstrate that such a family of

models is adequate to capture the mechanical responses

of the biological tissues under investigation. See also

figures 3b and 4b. From the associated relative elastic

modulus plotted in figures 3c and 4c, we also see that

this modulus increases under increasing compression,

hence condition (iii) is also valid. For all models, smaller rela-

tive values for the elastic modulus may be obtained when

this modulus is defined by (2.4).

As explained above, for brain and fat tissues, it was

observed experimentally that the shear modulus increases

sharply under increasing compressive strain, but not under

tensile strain, whereas the apparent elastic modulus increases

or remains almost constant when compressive strain increases.

The macroscopic, centimetre-scale, samples are heterogeneous

on a smaller length scale, because they are a mix of grey



Table 7. Relative errors of the shear modulus for Ogden models fitted to brain data.

compression or
tension (%)

relative error (%)

Ogden3

(brain)
Ogden4

(brain)
Ogden5

(brain)
Ogden6

(brain)
Ogden7

(brain)
Ogden8

(brain)

240.00 7.03 3.93 0.67 0.12 0.07 0.03

230.00 9.81 7.96 1.98 0.44 0.57 0.28

220.00 6.67 2.49 1.74 0.42 2.45 1.49

210.00 0.35 3.61 2.49 6.31 6.24 4.83

0.00 47.87 47.44 20.59 20.67 13.99 14.00

10.00 7.22 2.57 18.80 10.07 9.85 13.05

20.00 19.13 34.92 11.50 6.76 4.27 7.75

30.00 26.09 35.97 22.83 9.19 0.98 2.58

40.00 19.20 44.63 9.27 3.14 0.10 0.42

Table 6. Relative errors of the shear modulus for hyperelastic models fitted to brain data.

compression or
tension (%)

relative error (%)

neo-Hookean (brain) Mooney (brain) Fung (brain) Gent (brain)

240.00 80.05 70.25 60.61 50.18

230.00 78.12 70.47 68.71 53.01

220.00 69.50 62.75 64.51 51.97

210.00 54.16 49.34 52.41 32.97

0.00 1.00 1.00 1.05 0.05

10.00 14.68 3.78 19.40 6.40

20.00 36.15 11.49 62.31 7.56

30.00 62.86 20.69 155.88 3.73

40.00 123.73 50.03 474.16 51.08

Table 8. Relative errors of the shear modulus for Ogden models fitted to lean fat data.

compression or
tension (%)

relative error (%)

Ogden3

(lean)
Ogden4

(lean)
Ogden5

(lean)
Ogden6

(lean)
Ogden7

(lean)
Ogden8

(lean)

240.00 13.57 2.46 1.19 0.11 0.02 0.01

230.00 24.42 11.75 7.29 0.97 0.31 0.26

220.00 34.01 1.57 5.49 1.22 1.95 1.76

210.00 9.86 24.70 18.93 6.31 6.20 5.90

0.00 0.96 2.98 30.03 29.80 18.40 18.39

10.00 87.37 2.44 12.90 15.87 15.55 16.23

20.00 97.84 26.41 6.41 7.82 8.15 8.84

30.00 34.75 13.39 17.74 7.46 1.65 1.85

40.00 56.19 10.73 4.70 1.42 0.14 0.17
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and white matter with boundaries between, but this hetero-

geneity does not dominate the rheological response, because

grey and white matter do not differ strongly in stiffness,
and the macroscopic viscoelastic response does not depend

on precisely how the sample is cut or how large it is. In

addition, a characteristic of these tissues is that they exhibit a



Table 9. Relative errors of the shear modulus for Ogden models fitted to obese fat data.

compression or
tension (%)

relative error (%)

Ogden3

(obese)
Ogden4

(obese)
Ogden5

(obese)
Ogden6

(obese)
Ogden7

(obese)
Ogden8

(obese)

240.00 12.50 1.00 0.47 0.13 0.00 0.00

230.00 17.25 4.82 3.07 1.18 0.03 0.10

220.00 36.17 2.58 4.29 2.87 0.45 0.75

210.00 37.45 11.62 8.34 2.87 2.72 3.30

0.00 4.99 10.57 25.89 25.78 10.30 10.33

10.00 102.75 5.77 1.25 8.78 8.43 7.35

20.00 96.61 1.13 5.18 8.59 3.49 2.78

30.00 29.33 10.34 0.05 6.39 0.82 0.61

40.00 47.42 4.44 0.36 1.09 0.07 0.05

brain lean fat obese fat

Figure 5. Typical samples of brain, obese, and lean fat tissues are cut using
an 8 mm diameter stainless steel punch. Major brain structures, such as cer-
ebellum and olfactory bulb, are removed. The samples did not exhibit any
anisotropic characteristics.
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predominantly isotropic incompressible behaviour. Here, we

compare the behaviours of several nonlinear hyperelastic

models, both theoretically and numerically, and test our results

against available experimental data. Our analysis shows that

neo-Hookean, Mooney–Rivlin, Fung and Gent models,

which have been successfully employed to date in the model-

ling of rubber and of other man-made or natural materials,

are inadequate to model brain and fat tissues. Instead, for

these tissues, Ogden models, with four, six and eight coeffi-

cients, respectively, are found which are in excellent

agreement with the experiments. The newly identified

models can be easily implemented in finite-element codes.
4. Conclusion
Biological tissues offer a great diversity of mechanical

responses when subject to loads. Often, such behaviours

appear counterintuitive as our intuition has been forged by

centuries of studies of engineering material often treated in

the limit of small strains. It is then tempting to conclude

that classical continuum mechanics is not suitable for model-

ling biological materials. However, aside from the very few

classical models used indiscriminately for both rubbers and

biological tissues, there is a vast pool of potential models

that have yet to be explored, understood and classified.

Our approach when confronted with a new constitutive

phenomenon consists of two steps: first, based on exper-

imental evidence, classify qualitative responses that a model

ought to reproduce by an analytical study of relevant defor-

mations. Second, for the models that pass the first sift, find

suitable candidates in quantitative agreement with the data.

As presented here, this approach was successful for the

analysis of the response of brain and fat tissues, generating

in the process models that are capable of predicting some

of the key elastic properties underpinning the extraordinary

mechanical performance of these tissues, and which can be

integrated into large-scale computational framework. Far

for claiming that the models presented here are universal

models for brain and fat tissues, we demonstrate that a sys-

tematic approach in the framework of nonlinear elasticity

based on experimental data provides phenomenological
models that can be used to explore the large-scale response

of tissues and organs. We have listed several models that fit

the data increasingly well at the expense of an increase in

the number of parameters. We leave it to the practitioners

to decide, based on the problem at hand and the range of

deformation being studied, which model to use.

Our enquiry also suggests that the microscopic proces-

ses that generate macroscopic elastic responses in these

tissues are different to the ones found in other soft tissues

or elastomers. Clearly, there is a need for better understand-

ing of the mechanics of very soft tissues, particularly of the

brain, which is currently under intense study by researchers

in both biophysics and computational mechanics, and adi-

pose tissue, which is a growing area of investigation in

clinical research.
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Figure 6. (a) Experimental data for brain. Shear modulus was measured over time and with increasing tension/compression (0% to 40%). G0 relaxes to equilibrium
after 100 seconds. Recoverable deformation was observed when the compressed sample was returned to its initial height and the shear modulus G0 returned to its
uncompressed value. (b) Experimental data for lean and obese fat. Shear modulus was measured over time and with increasing tension/compression (0% to 40%).
G0 does not relax completely to equilibrium after 100 seconds, particularly for compression levels of 30% and above. For lean fat, recoverable deformation was
observed when the compressed sample was returned to its initial height and the shear modulus G0 returned to its uncompressed value. Obese fat largely recovers,
but residual stresses appear to remain after 40% compression.
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Figure 7. (a) Shear modulus of brain with increasing shear strains. The linear viscoelastic region was determined to be approximately 0.15-2.5% strain. (b) Shear
modulus of lean fat with increasing shear strains. The linear viscoelastic region was determined to be 0.15-4% strain.
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Appendix A. Experimental method
Brain and lean adipose tissues were harvested from adult

male wild-type C57BL/6 mice and obese adipose tissue was

collected from genetically obese ob/ob mice (The Jackson

Laboratory, Bar Harbor, ME). Fresh tissues were stored

in Dulbecco’s modified Eagle’s medium (DMEM, Gibco,

Grand Island, NY) and tested within a maximum of 3 h

after sacrifice. Macroscopic rheometry using a Rheometrics

fluids spectrometer III strain-controlled rheometer (Rheo-

metrics, Piscataway, NY) fitted with 8 mm diameter parallel

plates was used to measure the viscoelasticity of tissue samples

using methods previously described in [4]. During testing,

tissues were kept hydrated by surrounding the sample

with phosphate-buffered saline (PBS). Control experiments
showed that the use of DMEM and PBS increased tissue

weight only slightly—on average 4% for brain, 2% for fat.

Test samples were cut into disc-shaped samples using

an 8 mm diameter stainless steel punch, maintaining the cer-

ebral hemispheres, but removing the cerebellum, olfactory

bulb, pons and medulla (figure 5). Note that an 8 mm diam-

eter disc in the brain will necessarily contain a mixture of

different tissues and structures. However, structures such as

ventricles and vessels constitute a small percentage of the

volume (2%) and are not arranged in a highly oriented

manner. The bulk of the tissues consists of cells packed

together and surrounded by soft matrices, which in the

brain are flexible polysaccharides and so very likely to be

close to isotropic (as found repeatedly in other experiments

[1]). Because the length scale of the individual tissue com-

ponents is much smaller than the length scale of the bulk

tissue, the protocol provides an average mechanical response

suitable for comparison with continuum models. If swelling

occurs and we assume that it deforms the sample equally

in all directions, a typical 4% increase in volume yields 1%

increase in height. A 1% change in height and the effect on
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G0 are relatively small compared with the deformations the

samples are subjected to during measurement.

To avoid sample slippage during shear deformation

and to perform uniaxial extension, fibrin gel was used to glue

the sample to the rheometer plate. Fibrin gel was prepared

by mixing equal volumes of 28 mg ml21 salmon fibrinogen

solution with 125 U ml21 of thrombin (Sea Run Holdings,

Freeport, ME) directly on the lower rheometer plate, and the

sample was immediately positioned. Subsequently, a thin

layer of fibrin gel was pipetted onto the upper surface of the

tissue, and the top plate was lowered until a positive normal

force (1 g) was measured by a force transducer. Control exper-

iments showed that addition of fibrin glue did not affect the

viscoelastic properties of the tissue samples.

The dynamic shear storage modulus G0 was measured as a

function of time (brain: 2% oscillatory shear strain, 2 rad s21 fre-

quency; fat: 3.5% shear strain, 2.5 rad s21 frequency) and

increasing tensile/compressive strain (0–40%; figure 5). For

both brain [4] and lean fat, recoverable deformation was
observed when the compressed samplewas returned to its initial

height and the shear modulus G0 returned to its uncompressed

value (figure 6). Obese fat largely recovers, but residual stresses

appear to remain after 40% compression. This may be indicative

of tissue damage at higher levels of compression, but does not

negate the compression-stiffening phenomenon observed.

During each incremental compression, G0 demonstrated a relax-

ation response. Therefore, for the purposes of model fitting,

G0 values after 100 s of relaxation were used. In tension, the fol-

lowing correction was applied to account for the decrease in

cross-sectional area during testing under the assumption

that volume is conserved, G0actual ¼ G0measuredð1þ lÞ2, where

G0 is the storage modulus and l is the axial strain. To deter-

mine the linear viscoelastic region for each tissue, the shear

moduli G0 of brain and lean fat were measured with respect

to increasing shear strain up to 10% (n ¼ 3 each, figure 7). The

experimentally measurable linear viscoelastic region for

brain and fat were determined to be 0.15–2.5% and 0.15–4%

strain, respectively.
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