5 Biomembranes

zero.
fo i 0 . _nxxdy + [nxx + ﬂxx,de]d]/ - nyxdx + [nyx + nyx,xdy]dx = 0
Y. fy=0: —nyydx + [y + nyy,dy|dx — ny,dy + [nyy + 1y, dx]dy =0
Zfz =0: _nxxdy W+ [nxx + nxx,xdx]d]/[w,x + w,xxdx]

(5.2.9)

_nxydy w/y + [nxy —‘I_ nyxlxdx dy[w/y —‘I_ w/yxdx]

]
]

—nyydx wy + [nyy + nyyydyldx[w , + wy,dy] + p.dxdy =0

—nyxdx W x + [nyx + nxy,ydy dx [w,x + w,xydy]

To simplify the above equations, we divide each by dxdy and cancel the remaining
terms with dx or dy since those are small when compared to the remaining terms. The
above set of equations can then be reformulated as follows.

fo =0: Nyx,x + Nxyy = 0
Efy - O . nyx’x _|_ nyy,y = O (5.2.10)
Zfz = 0 . [nxx w,x + nxy w,y],x + [nxy w,x + nyy w'y]’y + pZ - O

Another equation which has not been stated explicitly here is the balance of momen-
tum around the z-axis ) m, = 0 which immediately tells us that the shear resultants
on the plane must always be in equilibrium as 7y, — nyx = 0. Actually, the most rele-
vant of the above equations is the force equilibrium in z-direction. It relates the surface
pressure p, or rather the stress on the shell’s surface to its transverse or out of plane dis-
placement w. By writing out the individual derivatives and making use of equations
(1.2.10); and (1.2.10); we can simplify the force equilibrium in transverse direction to
[nxx W,x + Nyy w,y],x + [nxy W,x + Nyy w,y],y + Pz = Nyx Wy +2 Nxy W,xy + Nyy W,yy + Pz =
0. To gain a better understanding of this equation, we will take a closer look at this
expression and elborate it for two special cases, the case of planar equibiaxial tension
and shear.

Equibiaxial tension

Let us assume a state for which the in plane normal stresses are the similar for both di-
rections, i.e. Oxx = 0yy = 0, while the shear stress vanishes oxy = 0. Moreover, we shall
assume a uniform extension such that ¢ takes the same values all over the membrane
and is thus independent from the position in space, i.e., ¢ # o(x,y,z). In structural
mechanics, this loading situation is called homogeneous equilibiaxial tension. For this
special case, we have ny, = n,, = n and nyy, = 0. Accordingly, the force equilibrium in
x- and y-direction (1.2.10); and (1.2.10); is trivially satified. The equilibrium of forces
in the transverse direction (1.2.10)3 then reduces to the classical Laplace equation for
membranes,

n [w’xx + w/yy] + pz — 0 (5211)
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5 Biomembranes

Energy minimization for the soap bubble problem Let us briefly turn back to the
soap bubble problem. Although maybe a bit more cumbersome, we can, of course,
derive the equilibrium equations through energy principles as well. We thus want to
look for the minimum of the overall energy W with respect to all dependent quantities.
Unlike in the bubble example where the kinematic unknown was just the radius r the
unknowns in our formulation here are the displacements u, v and w. Similar to the
soap bubble problem, the minimum of the overall energy W with respect to variations
in displacements u, v and w can be expressed through the vanishing first variation §W
with respect to the individual unknowns.

W(u,v,w) — min SW(u,v,w) = SW™ + §Wet = 0
The internal and external virtual work §W™ and §W®** can then be specified as follows.

SWnt = [, [E12 gy Sere + 200y Oty + 0y b2y dA
= | Nxx 065Y + 2nxy G653 + 1y 033" dzd A
oWt = [, pow dA

Energy considerations can sometimes be very illustrative. They immediately provide
information about the so called energy conjugate pairs. For example, from the above
expression, you can easily see that the shear stresses oy, are energetically conjugate
to the shear strains ¢y, or that the normal stress resultants 7, are conjugate to the
corresponding strains 5% which are constant over the thickness. The entire set of equi-
librium equations (1.2.10) can be extracted from the energy formulation by making use
of the kinematic equations and expressing the strains through the displacements. Then
we would perform an integration by parts and sort all contributions with respect to du,
0v and dw. Each related term would then represent one of the equilibrium equations
stated in equation (1.2.10). In this context, the equilibrium equations would be referred
to as the Euler-Lagrange equations.

which relates the pressure p, to the second gradient of the transverse displacements w
in terms of the surface tension n. Mathematicians would typically express this equation
in a somewhat more compact notation through the Laplace differential operator A =

2_ 9 , 2 —
Ve=5+ P such that w vy +wy, = Aw.

pz = —nAw with n ... surface tension (5.2.12)

Recall that the negative second derivative of the transverse displacement w takes the
interpretation of the curvature x. Accordingly —w yx = kxx =1/ ryand —wy = K,y =
1/ ry are the radii of curvature of the membrane about the y- and x-axis, respectively.

1 1
pe= —n[war +Wyy ] =1 [Kex + Ky | =1 {r_+r_} (5.2.13)
x Ty
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5 Biomembranes

For equal radii ry = ry, = r, equation (1.2.13) reduces to the classical membrane equa-
tion for spheres p, = —nAw = n[1/ry + 1/ry] = 2n /r similar to the one derived
for soap bubbles Ap = 2 / r in the motivation (1.1.11). Recall that v was introduced
as the surface tension, which is of the unit force per length. The stress resultant n, the
force per cross section length, obviously has the same unit and takes a similar interpre-
tation.

Surface strain

To this point, we have only looked into changes of geometry in each direction indepen-
dently. Sometimes it is interesting to know the response of a two-dimensional element,
say in terms of the membrane area A. What is the relation between the applied pres-
sure and the change of an area element of the shell mid-surface? Let us first define a
measure for this change in area. By increasing the pressure p,, or rather by blowing
up the soap bubble in section 1.1.3, a small square shell element of initial area A = L2
will increase its area to a = I2 = [1 + ¢]?L%. Accordingly, the dimensionless change is
defined as the ratio between the deformed and the initial area, AA = a/ A. Similar
to the one dimensional strain AL/L = [l — L]/L = & which is nothing but the length
change AL scaled by the original length L, we could thus introduce a two dimensional
area strain as the area change AA scaled by the original area A.
272 _ 72

A::”;A: [HE]L% BN SU- JUPY (5.2.14)
Here, we have made use of the assumption of small strains and therefore neglected
the quadratic term (9(82). In the case of equibiaxial tension with ny, = Ny = 1,
the in plane force equilibrium (1.2.7);, and similarly (1.2.7),, can obviously be further
simplified. With the help of exx = ¢, = e withe = [AA / A] / 2, equation (1.2.7); can
then be rewritten in the following form.

_ Eh (et ven ] = Eh 14 ]e = Eh AA
12t A R - 2[1-v] A

The proportionality factor of Young’s modulus E devided by [1 — v] scaled by the thick-
ness h is often referred to as area expansion modulus K4 = [Eh] /2[1 —v]. It relates
the membrane forces n and the area strain AA / A.

AA Eh
=Kq4— ith Kp=———
n A wit A 2[1—1/]

n (5.2.15)

1 ... area expansion modulus (5.2.16)

You can easily check that it has the dimensions of force per length similar to the stress
resultant n. Typical values of the area expansion modulus for lipid bilayers are in the
range of K4 = 0.1 — 1.0 N/m. The cell membrane of red blood cells, for example, has
an area expansion modulus of approximately K4 = 0.45 N/m. This value is incredibly
huge as compared to the other moduli which indicates that cell membranes can be
treated as nearly incompressible. The large resistance to area change can be attributed
to the changes in energy associated with exposing the hydrophobic core of the lipid
bilayer to water as the spacing between the individual molecules is increased.
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5 Biomembranes

Shear

Until now, we have assumed that the in plane normal stresses are the similar for both
directions and that the shear term vanishes. A typical loading scenario that would
involve shear though is the application of tension in one direction, say oy such that
the membrane stretches in x direction while it contracts under smaller tension oy, in
the y direction. Although we only apply normal stresses of different magnitude and
we do not apply shear stress in the original coordinate system where oxy =0, surfaces
oriented under an angle of 45° exhibit pure shear stress which is of the magnitude
Oxy = [Oxx — 0yy | / 2. Biological membranes, in particular the lipid bilayer that forms
the cell membrane, hardly display any resistance to shear. In that sense, they behave
like fluids and are therefore often treated as a two-dimensional liquids. You can simply
check the lack of shear resistance by putting a flat plate on the surface of water. The
force you need to apply to move the plate around is relatively small as compared to,
for instance, the force you would need in order to press it down. This characteristic
behavior is reflected through a relatively small shear modulus G = E / [2[1 + v]] and
a relatively large bulk or volume expansion modulus K = E /[3[1 — 2v]]. From the
constitutive equation introduced in chapter 2, we can extract the stress strain relation
for the shear component oyy = E / [1+v] exy = 2 G éyy. It introduces the constitutive
relation between the shear stress resultant 1,y = 0y, h and the shear strain ¢y,,.

Eh
1+v

Here, we have introduced the membrane shear stiffness Ks =2Gh = [Eh]/[1+v,],
which has the unit force per length. The cell membrane of a red blood cell would
have a typical value of Ks = 6 —9 - 107® N/m. This value is extremely small, es-
pecically when compared to the area expansion modulus of red blood cell membranes
K4 = 0.45 N/m. This indicates that the effect of shear can usually be neglected under
static loading. However, it might play a significant role under dynamic loading con-
ditions: Fluids typically display a significant strain rate sensitivity, an effect which is
referred to as viscosity.

... membrane shear stiffness  (5.2.17)

The fluid mosiac model What does a low shear stiffness mean for a cell? We have
seen that different biological membranes have different functions depending on the
proteins associated with their membrane. The low shear resistance indicates that mem-
brane proteins and lipids can easily diffuse laterally or sideways throughout the mem-
brane, giving it its characteristic appearance of a fluid rather than a solid. This prop-
erty was first recognized by Singer and Nicolson in 1972 who coined the notion of the
fluid mosaic model [42]. The fluid mosaic model of lipid bilayer membranes is a two-
dimensional fluid, or liquid crystal, in which the hydrophobic integral components
such as lipids and membrane proteins are constrained within the plane of the mem-
brane, but are free to diffuse laterally. From a mechanics point of view, biomembranes
can thus be understood as fluids as they bear very little resistance to shear.
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5 Biomembranes

5.2.3 Transverse deformation - Bending

In the previous subsection, we have elaborated the contributions to the strains which
are constant over the thickness and could be related to in plane tension and shear. Let
us now examine the contributions which vary linearly over the thickness. These con-
tributions are related to the transverse displacement w or rather its second derivative.
From a structural mechanics point of view they introduce a phenomenon which is re-
ferred to as bending, as illustrated in figure 1.20.
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Figure 5.20: Infinitesimal element of the cell membrane with pressure p. and bending moment m,,

Myy

In this section, we derive the classical Kirchhoff plate equation, a fourth order differen-
tial equation that essentially governs the transverse displacement or rather out of plane
deflection w in response to a given pressure p, acting in the out-of-plane direction z.
The plate equation is a result of four sets of governing equations, the kinematics, the
constitutive equations, the definition of the stres resultants and the equilibrium equa-
tions which are illustrated in detail in the sequel. Similar to the previous subsection, we
begin by taking a look at equation (1.2.4). This time, we extract all non constant terms
that involve the z-coordinate. The resulting kinematic equations relate the in in plane
normal strains ey, and ¢, and the in plane shear strain ¢y, to the second derivatives of
the membrane deflection w xx, wyy and w yy.

Exx = —Wxx 2 = Kxx Z
Eyy = —Wyy Z = Kyy Z (5.2.18)
exy — _w,xy z = ny Z

Recall that, from a kinematical point of view, the second derivatives of the deflection
represent the curvatures —w yy = Kyy, —W,yy = Kyy and —wy = Ky, From chapter
2, we can extract the relevant constitutive equations, i.e. the equations relating stress
and strain. In particular they relate the in plane normal stresses oy and 0y, and the in
plane shear stress 0y to the corresponding strains ¢ or curvatures x

Oxx = l_Evz [exx‘f‘Vﬁyy] = 1_% [Kxx—l-l/Kyy] z
_ _E _ _E

Oy = 1o ey Fven] = 57 [Kyy + v 2 (5.2.19)
_ _E __E

Oxy = 1tv Exy = 1v Kxy Z
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5 Biomembranes

Similar to the previous section, we could rewrite the last equation of this set as Oxy =
G eyy where G = ﬁ is the shear modulus. Equation (1.2.19) tells us something
about the stresses in a particular cross section. Stresses, however, cannot be directly
used to evaluate equilibrium. To state the equilibrium equations, we therefore de-
rive the stress resultants myy, m,, and my, in terms of corresponding stresses inte-
grated over the surface thickness . These resultants are the moments per cross section
length which unlike the forces introduced in the previous section are not continuous
across the cross section. Therefore, as indicated before, we really have to evaluate them

through an integration across the thickness.

+h/2 3
Mxx = J_p/2 Oxxzdz = 12}[?;,2} [Kxx+VKyy]
+h/2 ER3
Myy = | _njp Oyy2dz = pog [Feyy + Vi ] (52.20)
_ [th/2 _ _EI
My = J_pp Oxw2dz = 50 Kxy

Unlike in the previous section, where the stress resultants had the charcter of forces
per length we have now introduced resultants which are of the unit force times length
per length which is characteristic for distributed moments. By assuming a uniform

thickness and homogeneous material properties across the thickness, we can introduce
. . _ r+h/2 E 2 _ __ERW

the membrane bending stiffness Kg = [, 1D T2 % dz = 117

equations for bending which can be motivated from figure 1.20 consist of the force

equilibrium in z-direction and the equilibrium of momentum around the x- and y-axis.

. The equilibrium

Y fx=0: —Mxxdy + [Mx + Mxxdx]dy — 1yxdx + [1yx + nyxdyldx =0
Lfy=0:  —nydx+ [nyy + nyy,dyldx — nwydy + [ne + ty,ydx]dy =0
Zfz =0: —Tlxxd]/ Wy + [Tlxx + nxx,xdx]dy[w,x + w,xde]

(5.2.21)

_nxydy w,y + [nxy + nyx’xdx dy [w,y + w,yxdx]

]
]

—nyydx wy + [nyy + nyyydyldx[w, + wy,dy] + p.dxdy =0

_nyxdx w/x + [nyx + nxy,ydy d..x [w,x + w/xydy]

Just like for the in plane deformation equilibrium, we divide each equation by dxdy
and cancel the remaining terms with dx or dy which are small when compared to
the remaining terms. The remaining terms then yield the following simplified set of
equations.

Zfz =0 Qxx T Qyy + pz = 0
Zmy =0 Myxyx + Myxy — x = 0 (5.2.22)
Ymy =0 Myyy + Myyx — gy = 0

With the use of the x-derivative of the balance of momentum (1.2.22); g xx = Myxxx +

Myyx,yx, the y-derivative of the balance of momentum (1.2.22)3 g,y = myy 1y + Myy,xy and
the fact that my, x, = myxyx, We can rewrite the balance of forces in thickness direction
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5 Biomembranes

(1.2.22)1. The equilibrium equations (1.2.22) can thus be summarized in just one simple
equation.

My, xx + 2 Myy,xy + Myy,yy + Pz = 0 (5.2.23)

The above equation can be reformulated by inserting the definition of the stress re-
sultants, by making use of the constitutive equations and the kinematic assuptions to
tinally yield the classical fourth order differential equation for thin plates, the Kirchhoff
plate equation.

pz = Kp [ W xxxx + 2 W xxyy T W,yyyy ] (5.2.24)

It relates the pressure p, to the fourth gradient of the transverse displacements w in
terms of the bending stiffness Kg. Mathematicians would rewrite the plate equation in

. . . . 2 92 92
compact notation in terms of the Laplace differential operator A = V= = =% + T
ER

2 .
= th Kg=—F——5;
p: = Kp A*w  wi B 201 — 7]

... membrane bending stiffness (5.2.25)
Typical values for the membrane bending stiffness Kg are in the order of 1071 Nm for
lipid bilayers such as the cell membrane of the red blood cell. This is a really low value
as compared to the area expansion modulus K 4. It is even low when compared to the
membrane shear modulus Kg! This indicates that the effect of bending is of minor or-
der in biomembranes. This is not surprising though since membrane structures are,
by their very definition, structures that try to achieve an optimal stiffness to weight
ratio by carrying loads exclusively through in plane normal forces and avoiding out of
plane bending as much as possible!

Energy minimization Again, we can write derive the equilibrium equations through
an energy principle. To this end, we would minimize the overall energy with respect
to the transvere displacement w, or, equivalently, evaluate its vanishing first variation
OW with respect to w.

W(w) — min  §W(w) = W™ + W™ =0
The internal and external energy expression could then be expressed as follows.

SWnt = [, [E12 gy Sty + 200y Gy + 0y b2y dzdA
= /4 My OKyx + 2Myy OKyy + My 01y dA
oWt = [, pow dA

We can immediately see that the stress resultants m are energetically conjugate to the
curvature x. Again, by carrying out an intergration by parts, energy minimization
would yield the equilibrium equations (1.2.22) which in that context, would be referred
to as the Euler-Lagrange equations.
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5 Biomembranes

In plane vs transverse deformation - Tension vs bending

For the sake of clarity, we have treated the load cases of tension and bending as in-
dividual phenomena so far. Of course, in reality, both usually occur simultaneously,
however, most of the times one really dominates the other. An overall description
that captures both phenomena and is thus representative for biomembranes in gen-
eral summarizes both transverse force equilibrium equations (1.2.10)3 and (1.2.22); or
rather equations (1.2.11) and (1.2.24) in one single equation.

n [w,xx + w,yy] — Kp [w,xxxx +2 W, xxyy + w,yyyy] +pz: = 0 (5.2.26)

The ratio between the two constants 7 and Kg would then immediately tell us which of
the two phenomena is dominant. Let w be the transverse displacement and A be a char-
acteristic length over which these transverse displacements may vary. The membrane
term would thus scale with 7w / A? while the bending term scales with Kz w / A*. The
ratio of these scaling factors Kp / [n A?] could give us an indication of whether tension
or bending is relevant under the given conditons.

% < 1 tension dominated (5.2.27)
% > 1 bending dominated B

A typical value for cells at Kz = 1078Nm, n = 5-10°N/m and A = 1uym would be
nl% = 0.02 which would indicate that in biological cells, membrane effects are typically
dominant over bending.

5.3 Summary
5.4 Problems

Problem 5.1 - Visualization of surface tension

We have seen that surface tension is important to give the cell membrane its spherial
shape. A way to visualize surface tension is to float a paper clip on the surface of water.
Think of other ways to illustrate surface tension!

If you fill a glass with water, you will be able to add water above the rim of the glass
because of surface tension! Small insects such as the water strider can walk on water
because their weight is not enough to penetrate the surface.

Problem 5.2 - Platonic solids

Look up the number of sides and the surface to volume ratio for the five platonic solids.
Show that the surface to volume ratio decreases with increasing number of sides. Com-
pare your results against the surface to volume ratio of a sphere with infinely many
sides.
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