5 Biomembranes

5.1.2 Lipid bilayers

In cell biology, the notion membrane is typically associated with the phospholipid
bilayer and the proteins associated with it. In aqueous solutions, these proteins es-
sentially display two kinds of non-covalent interactions which are referred to as hy-
drophobic and hydrophilic. Long polymer molecules typically tend to adopt confir-
mations, in which non-polar residues are predominantly sequestered such that they
avoid contact with water. The non-polar residues are said to be hydrophobic or water-
avoiding. Polymer molecules favor confirmations, in which the polar head groups
are exposed to water. The polar head groups are referred to as being hydrophilic or
water-loving. A typical example is the arrangement of fatty acids at an oil water in-
terface, where the hydrophilic polar heads would typcially be oriented towards the
water phase while the hydrophobic tails would be oriented towards the oil phase, see
tigure 5.11.

water hydrophilic head
oil water interface W (SD fatty acid
oil hydrophobic tail

Figure 5.11: Oil water interface. Characteristic arrangement of fatty acid molecules with hydrophilic polar
head group oriented towards the water phase and hydrophobic tail oriented towards the oil phase

From an energetic point of view, lipid bilayers show an attractive arrangement since
they display both hydrophobic and hydrophilic interactions. The nonpolar fatty acid
chains of the phospholipid molecules are sequestered together away from the water
sandwiched between the polar head groups to maximize hydrophobic interactions. At
the same time, the ionic polar head groups are in direct contact with the aqueous phase
to maximize hydrophilic interactions. This dual nature of the molecules is referred to
as amphiphilic.

For energetic reasons, each lipid bilayer has an inherent optimal microstructure with
and optimal spacing between the lipid molecules. Any perturbation to this optimal ar-
rangement disturbes this energetically favorable microstructure. The lipid bilayer thus
exhibits an inherent resistance to deformations that cause shape changes. Typical ex-
amples are extension, for which the spacing between the head groups would increase
throughout the membrane, or bending for which the head group spacing would in-
crease on the outside while it would decrease on the inside, see figure 5.12.

One of the key issues of this chapter is the identification of characteristic macroscopic
paramteres that display the nature of these intermolecular effects in a phenomenolog-
ical way and account for the resistance of the cell membrane to extension, shear and
bending. To this end, we will first look at a lipid bilayer structure that everybody can
easily reproduce and elaborate at home, the structure of soap bubbles. When having
understood how soap bubbles behave and how they can be described by mathemati-
cal equations, we will turn to elaborating the structural behavior of the cell membrane
which is slightly more complicated but obey a similar set of equations from a mathe-
matical point of view.

65



5 Biomembranes

QOO0 &
OOOO le) O

;?élﬁm q§¥§i§j%33§/

175

Myx Pz

Myy

Figure 5.12: Infinitesimal element of the cell membrane subject to tension causing in plane deformation
and shear (left) and bending causing out of plane deformation (right)

5.1.3 Soap bubbles

Soap bubbles are fascinating structures that display many similar features as the cell
membrane. They can be used as model system to illustrate the qualitative behavior
of a lipid bilayer. Soap bubbles are an excellent example of a self-assembled system.
Their surface consists of a thin layer of water trapped between two layers of surfactant,
typically soap. The surfactant possesses hydrophilic heads attracted to the thin water
layer. Its hydrophobic tails form the inner and outer surface of the bubble as sketched
tigure 5.13. When being disturbed, the bubble pops.
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Figure 5.13: Lipid bilayer of soap bubbles - characteristic arrangement of soap molecules with a thin
water layer being sandwiched between the hydrophilic polar head groups while the hydrophobic tails are
oriented to the non-polar air

The spherical shape of a soap bubble nicely displays the principle of energy mini-
mization. Surface tension causes the bubble to form a sphere because this shape, as
proposed by Archimedes and proven rigorously by Schwarz in 1884, is the minimal
surface enclosing a fixed given volume. The spherical shape can be visibly distorted
by additional external forces, you can easily test this by blowing against the bubble
surface. If a bubble is subject to an enviroment without any additional external forces
acting on it, however, it should always remain nearly spherical as displayed in figure
5.14.

An interesting question to ask about soap bubbles is what is the radius r of a soap bub-
ble that is blown up at a pressure Ap? Here Ap = p™ — p°* would be the pressure
difference between the inside and outside of the bubble. To answer this question, we
consider spherical soap bubble with initial radius r, that has a surface of A = 4 7772
and a volume of V = 37r>. The inflation of the surface induces an internal energy
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Figure 5.14: Lipid bilayer of soap bubbles - characteristic arrangement of soap molecules with a thin

water layer being sandwiched between the hydrophilic polar head groups while the hydrophobic tails are
oriented to the non-polar air

soap bubble

Wit which is assumed to be proportional to the increase in membrane surface A. In
the simplest case, Wint = o A where, for now, v is introduces as a mere proportionality
constant. Its unit is obvioulsy force per length and its physical interpretation will be
discussed later. The external work W' is equal to the pressure difference Ap acting on
the enclosed volume V, such that W' = Ap V. The total energy W of the bubble thus
consists of the internal energy W™ and the external energy W,

. Wt = v A = q4dmrr?
W(r) = W — WS with 7 7 (5.1.9)
Wt = ApV = Apsnr®

The minimum of the overall energy W with varying bubble radius r is obviously equiv-
alent to the vanishing first variation JW with respect to r.

SWint — 8
W(r) —min  6W(r)=0  with rent (5.1.10)
SWS = Apdmr?

Evaluating the above equation y8 717 — Ap4 wr> = 0 we obtain the following simple
relation between the pressure difference Ap and the bubble radius r

1
Ap=27- (5.1.11)

which has been developed independently by Young and Laplace more than 200 years
ago [25,44]. In the literature, equation (5.1.11) is referred to as the Young-Laplace equa-
tion. The historical controversy about its development is documented by Miiller &
Strehlow [32]. We will see later how this equation for spherical membranes such as
soap bubbles can be derived in a more rigorous form.

The cohesive forces between liquid molecules are responsible for the phenomenon
which is referred to as surface tension. Cohesive forces between molecules are shared
between all neighboring molecules. Unlike molecules in the bulk of the liquid, molecules
close to the surface are surrounded by neighboring molecules from only one side.
These molecules on the surface thus exhibit stronger attractive forces upon their near-
est neighbors than do those on the inside. This enhancement of intermolecular attrac-
tive forces close to the surface is called surface tension, see figure 5.18.
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Figure 5.15: Air water interface - molecular interpretation of surface tension

More than a century ago, an illustrative set of experiments on surface tension was car-
ried out by Boys [6]. You can easily visualize the effect of surface tension by carefully
laying down a paper clip on a surface of water. Although the density of the paper clip
should be higher than that of water and you would expect it to sink down, it actually
floats on top of the water surface due to surface tension.

Surface tension Surface tension is typically measured in force per length related to
the units dynes per cm. Since 1 dyne = 10 mN, 1 dyne/cm =1 mN/m. Alternatively, es-
pecially in thermodynamics, the notion surface energy is used instead. Surface energy
is measured in ergs per length squared, where one eng, the force of one dyne exerted
for a distance of one cm is equal to gram centimeter squared per second squared g
cm?/s? or, equivalently, 107 joules. The surface tension of water at room temperature
is yVater=72 dynes/cm, ethanol has a lower surface tension of *ha°!=22 dynes/cm and
mercury has a surface tension as large as y™"“""Y=465 dynes/cm.

5.1.4 Cell membranes

The most intriguing of all biomembranes is the cell membrane, a semipermeable phos-
pholipid bilayer common to all living cells. This lipid bilayer which is approximately
6-7 nm thick consists of a variety of different biopolymers the most common of which
are proteins, lipids and oligosaccharides.
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Figure 5.16: Lipid bilayer of the cell membrane - characteristic arrangement of phospholipid molecules
with hydrophilic polar head groups being oriented towards the aqueous phase while the hydrophobic
tails are oriented towards the non-polar inside

The term lipid specifies a category of water-insoluble, energy rich macromolecules,
typical of fats, waxes, and oils. Throughout the phospholipid bilayer, we find aggre-
gates of globular proteins which are irregularly dispersed and free to move within the
layer giving the membrane a fluid-like appearance. On the inside, the lipid bilayer
serves as attachment for the cytoskeleton which is primarily responsible to controll the
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cell shape, see figure 5.16. On the outside, the cell membrane plays an important role in
attaching to the extracellular matrix. Specific proteins embedded in the cell membrane
can act as molecular signals and to allow for cell to cell interaction. In funghi, bacteria
and plants, the cell membrane is further surrounded by the cell wall. In an aqueous
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Figure 5.17: Lipid bilayer of cell membrane - characteristic arrangement of phospholipid molecules with
hydrophilic polar head groups being oriented towards the aqueous phase while the hydrophobic tails are
oriented towards the non-polar inside

environment, the intact cell membrane seeks to attain its lowest energy level. Accord-
ingly, the nonpolar aminoacid residues of its proteins and the fatty acid chains of its
phospholipids will typically be sequestered furthest away from the aqueous solvent.
The ionic and polar head groups of the proteins, the lipids and the oligosaccharides,
in turn, will seek to be in contact with water, see figure 5.17. Perhaps the most impor-
tant lesson learned from the study of pure phospholipid bilayer membranes is that they
spontaneously seal to form closed structures that separate two aqueous compartments.
In the configuration of a plain sheet with ends in which the hydrophobic interior are in
contact with water, bilayers are unstable. Their typical spherical architecture with no
ends is the most stable state of a phospholipid bilayer.

5.2 Energy

From a structural mechanics point of view, biomembranes are characterized through
their very thin structure. As you have seen, the lipid bilayer of the cell membrane has
a thickness of approximately 6 nm. The typical dimensions of a cell are at least of the
order of ym. Therefore, it is quite common to treat biomembranes as shell structures. In
general, the notion of shells is associated with thin, curved structures that are subjected
to loads that can cause in plane stretches and shear and out of plane bending. A special
case of shells, a flat shell of zero curvature, would be referred to as a plate. Shells are
structural elements for which one dimension, the thickness, is much smaller than their
two other dimensions, the length and the width. Based on this dimensional restriction,
specific kinematic assumptions can be made that significantly reduce and simplify the
set of governing equations of three dimensional continua [17,22,36,41].
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5.2.1 The Kirchhoff Love theory

The kinematic assumptions that seem reasonable for biomembranes are based on the
classical von Karmén theory. The von Karman theory implies that the displacements
are small, while the rotations of the shell’s mid surface can be moderate. Of course,
moderate is a rather vague characterization, but what is actually ment by it is rotations
of up to the order of 10° or 15°. A detailed comparison of shell kinematics is provided
by Fliigge [15], see also Reddy [39] for a more recent overview. In the von Karman
theory, the displacements are assumed to satisfy the Kirchhoff hypothesis, which is
essentially based on the following three assumptions.

* normals remain straight (they do not bend)
* normals remain unstretched (they keep the same length)
* normals remain normal (they remain orthogonal to the mid-surface)

The Kirchhoff hypothesis implies that the total in-plane displacements u™" and v'* at

any point of the membrane x, y, z can be expressed as the sum of the in-plane displace-
ments 1 and v at x, y and some additional displacements introduced by the rotations of
the shell’s mid surface w» and w . The latter vary linearly across the thickness direc-
tion z, as illustrated in figure ??. According to the Kirchhoff hypothesis, the transverse
displacement w™" at x, y, z is constant in the thickness direction, i.e. w is only a function
of the in-plane coordinates x, y.

u(x,y,z) = u(x,y) — zwy
ol (x,y,2) = o(x,y) — zw, 5.2.1)

w(x,y,2) = w(x,y)

Recall the definition of the Green Lagrange E strains as introduced in chapter 2. Keep
in mind that equal indices indicate normal strains and different indices indicate shear
strains!

Eyy = Uy +10 W+ A+ wd ]
Eyy vy +3[ W+ 0 + wy ]
E.. W, + 3 i + 2+ Wi ] 522
Exy = g luy+ox] + 5 [ uay + 050y + wawy ]
Epe = 3[oztwyl + 3 [uynz + 040 + wyw, |
Exe = g lwatuz] + 3 [ uzihy + 000 + wawy |

In the von Kérmén theory, we typically assume that the deformations are small, i.e.
Uy, Uy, Uy, 0y and w, are of the order O(e). The small strain assumption thus implies
that any multiplicative combination of these terms is of the order O(e?) and can thus
be neglected. However, for shells, it is common to allow the rotations of the transverse
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normal wy and w, to be moderate. The wording moderate indicates that the multi-
plicative terms w/zx, wlzy and w yw , cannot be neglected! For small strains and moderate
rotations, the kinematic equations which describe the strain displacement relations for

thin shells take the following format.

Exy = fgt 4 %wtotZ Exy = %[utot +vtot] 4 %wtotw:r;t

__ ytot 1. ,tot2 _ 1,tot tot 1. tot,,tot
&y = Uy T Wy ey: = 3 [0 +wh] + jwhw? (5.2.3)
€y = wtgt I %[wtot_'_utot] + %wtotwtot

tot

By inserting the definitions of the total displacments u'**, v*' and w'"' of equation

(5.2.1), we obtain the von Kdrman strains

1 1
Exx = Uy + 3 W —ZWqx Exy = 5 Uy +Ux +WWy —2ZW ]
_ 1,2 _ 1
Eyy = Vy+ Wy —ZWyy €z = 5 [V + Wy +Wyw, — ZW,y] (5.2.4)
1
€z = W, E2x = 5 [ Wx+ Uz +WWy — ZW,y)

for the classical von Kédrman shell theory. Since we required the transverse normal
to be inextensible, there are no strain components in the out of plane direction, i.e.

E€xz = &yz = €7z = 0.
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Figure 5.18: Von Karman strains in cross section — constant terms " related to in plain strains and
linear terms €li" related to out of plane bending

By taking a closer look at the in plane strains, we realize that both the in plane normal
strains ¢y, and ¢, and the in plane shear strains ¢y, consist of some contributions £«"
which are independent of the z-coordinate and thus constant over the thickness. In
addition, each in plane strain component has one contribution ¢ that varies linearly
over the thickness. While the former are related to the in plane deformation in the form
of tension and shear, the latter are related to the out of plane deformation in the form
of bending. The overall deformation of plates and shells can thus be understood as the
superposition of three basic deformation modes, in plane tension and shear and out
of plane bending. These three modes will be treated independently in the following
subsections.

5.2.2 In plane deformation - Tension and shear

Let us first elaborate the strain contributions which are constant over the thickness.
These can be related to the notions of in plane tension and shear. An infinitesimal
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Figure 5.19: Infinitesimal element of the cell membrane with in plane tensile forces n,, and n,,

element of the cell membrane subjected to in plane tensile forces is illustrated in fig-
ure 5.19. As we will see, these equations can be characterized through a second order
differential equation. Due to its particular format it is referred to as Laplace equa-
tion. Here, it relates the second gradient of the transverse displacement w, or rather
the curvature or inverse radius, to the transverse pressure p,. The Laplace equation is
essentially a result of the four sets of governing equations, the kinematics, the consti-
tutive equations, the equilibrium equations and the definition of the stress resultants.
To evaluate the kinematics associated with tension and shear, we take a closer look at
equation (5.2.4) and extract all terms which are independent of the z-coordinate to the
following constitutive equations which relate the in plane strains ¢y, ¢, and ¢y, to the
displacements u, v and w.

Sxx — u/x —‘I_ % w[zx
— 1.2

gxy - % [l/l’y + Z)’_x] + w’xw’y

Recall the constitutive equation, i.e. the stress strain relations, for a linear elastic ma-
terial which we have introduced in chapter 2. Remember that similar indices denote
normal stress and strain compontents whereas different indices denote shear stress and
strain.

Owx = 707 [Exx +Veyy]
E
Oyy = 172 [gyy—}—ygxx] (5.2.6)
_ E
Oxy = 11w Exy

From a material scientist’s point of view, tension and shear represent completely differ-
ent physical phenomena. It is not surprising though that they are related through dif-
ferent material constants. Sometimes the notion G =E / [2[1+v]||Joru =E/[2[1+
v]] is used for the material parameter relating shear stress and strain in equation
(5.2.6)3. In the engineering notation, the shear strains ¢,, are often replaced by the
engineering shear strain 7y, = 2¢y, and Tyy = 0y is used for the shear strain in order
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to indicate that the microscopic pheneomena that cause shear are truly different from
those that are related to tension and stretch.

Equation (5.2.6) gives us some information about the normal and shear stresses in a
cross section. But what are the force are that act on one particular cross section of the
shell? You might all remember that stress is force divided by area, so ¢ = N/A. So
you would probably guess that force should be stress multiplied by area, something
like N = 0-A = 0-b-h, where the total area A has been expressed as the product of the
width b and the thickness h. Here, we are interested in forces per cross section length
n = N/b. These would be the stresses multiplied by the thickness, n = N/b = ¢ - h.
In a somewhat more general sense, what we just did is we integrated the stresses over

the thickness, n = [ +hh// 22 o dz. You can think of this as determining the area under the
sigma curve in a ¢ over h diagram for h running from h = —1/2to h = +1/2. So here,

since the stresses are constant over the thickness, the area of interest would simply be
a rectangle. So the integral expression would just render the product of stress times

thinkness, f 12 2odz =0 -h. Keep in mind, however, that this is not the case for non
constant stresses such as those related to bending! So here are the equations for the
forces per cross section length which are sometimes also referred to as stress resultants
in the structural mechanics literature.

+h/2
Nyxx = f h//z Uxx = O'xx-h = [1€ﬁ2] [Sxx+VSyy]
_ th/2 B  En
nyy = [pp Opdz = oy h = 7] [eyy +Very] (5.2.7)
_ +h/2 B _En
ey = [Dpjg Cwdz = 0l = 135 Exy

Here, nyy and n,, are the normal forces per unit length and 7y, is the shear force per
unit length. We have implicitly assumed homogeneous material properties across the
thickness, i.e. neither E nor v are functions that vary with z. Typical examples of ma-
terials with varying properties in the z direction would be sandwiched lightweight
structures or composite materials typically found in the airplane industry. For our case
with homogeneous material properties, the notion extensional stiffness is usually in-
troduced for the parameter Ky that relates the stress resultants n,, and n,, and strains
exx and &yy.

Nxx = Ky |exx + Ve Eh
= Nlex w] with Ky = —= ... extensional stiffness (5.2.8)

2
With the forces per unit length, we can now write down the three force equilibrium
equations by just summing up all arrows in figure 5.19 that point in the same direction

in space. Equilibrium states that the sum of these forces should always be equal to
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zero.
fo i 0 . _nxxdy + [nxx + ﬂxx,de]d]/ - nyxdx + [nyx + nyx,xdy]dx = 0
Y. fy=0: —nyydx + [y + nyy,dy|dx — ny,dy + [nyy + 1y, dx]dy =0
Zfz =0: _nxxdy W+ [nxx + nxx,xdx]d]/[w,x + w,xxdx]

(5.2.9)

_nxydy w/y + [nxy —‘I_ nyxlxdx dy[w/y —‘I_ w/yxdx]

]
]

—nyydx wy + [nyy + nyyydyldx[w , + wy,dy] + p.dxdy =0

—nyxdx W x + [nyx + nxy,ydy dx [w,x + w,xydy]

To simplify the above equations, we divide each by dxdy and cancel the remaining
terms with dx or dy since those are small when compared to the remaining terms. The
above set of equations can then be reformulated as follows.

fo =0: Nyx,x + Nxyy = 0
Efy - O . nyx’x _|_ nyy,y = O (5.2.10)
Zfz = 0 . [nxx w,x + nxy w,y],x + [nxy w,x + nyy w'y]’y + pZ - O

Another equation which has not been stated explicitly here is the balance of momen-
tum around the z-axis ) m, = 0 which immediately tells us that the shear resultants
on the plane must always be in equilibrium as 7y, — nyx = 0. Actually, the most rele-
vant of the above equations is the force equilibrium in z-direction. It relates the surface
pressure p, or rather the stress on the shell’s surface to its transverse or out of plane dis-
placement w. By writing out the individual derivatives and making use of equations
(5.2.10); and (5.2.10); we can simplify the force equilibrium in transverse direction to
[nxx W,x + Nyy w,y],x + [nxy W,x + Nyy w,y],y + Pz = Nyx Wy +2 Nxy W,xy + Nyy W,yy + Pz =
0. To gain a better understanding of this equation, we will take a closer look at this
expression and elborate it for two special cases, the case of planar equibiaxial tension
and shear.

Equibiaxial tension

Let us assume a state for which the in plane normal stresses are the similar for both di-
rections, i.e. Oxx = 0yy = 0, while the shear stress vanishes oxy = 0. Moreover, we shall
assume a uniform extension such that ¢ takes the same values all over the membrane
and is thus independent from the position in space, i.e., ¢ # o(x,y,z). In structural
mechanics, this loading situation is called homogeneous equilibiaxial tension. For this
special case, we have ny, = n,, = n and nyy, = 0. Accordingly, the force equilibrium in
x- and y-direction (5.2.10); and (5.2.10); is trivially satified. The equilibrium of forces
in the transverse direction (5.2.10)3 then reduces to the classical Laplace equation for
membranes,

n [w’xx + w/yy] + pz — 0 (5211)
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Energy minimization for the soap bubble problem Let us briefly turn back to the
soap bubble problem. Although maybe a bit more cumbersome, we can, of course,
derive the equilibrium equations through energy principles as well. We thus want to
look for the minimum of the overall energy W with respect to all dependent quantities.
Unlike in the bubble example where the kinematic unknown was just the radius r the
unknowns in our formulation here are the displacements u, v and w. Similar to the
soap bubble problem, the minimum of the overall energy W with respect to variations
in displacements u, v and w can be expressed through the vanishing first variation §W
with respect to the individual unknowns.

W(u,v,w) — min SW(u,v,w) = SW™ + §Wet = 0
The internal and external virtual work §W™ and §W®** can then be specified as follows.

SWnt = [, [E12 gy Sere + 200y Oty + 0y b2y dA
= | Nxx 065Y + 2nxy G653 + 1y 033" dzd A
oWt = [, pow dA

Energy considerations can sometimes be very illustrative. They immediately provide
information about the so called energy conjugate pairs. For example, from the above
expression, you can easily see that the shear stresses oy, are energetically conjugate
to the shear strains ¢y, or that the normal stress resultants 7, are conjugate to the
corresponding strains 5% which are constant over the thickness. The entire set of equi-
librium equations (5.2.10) can be extracted from the energy formulation by making use
of the kinematic equations and expressing the strains through the displacements. Then
we would perform an integration by parts and sort all contributions with respect to du,
0v and dw. Each related term would then represent one of the equilibrium equations
stated in equation (5.2.10). In this context, the equilibrium equations would be referred
to as the Euler-Lagrange equations.

which relates the pressure p, to the second gradient of the transverse displacements w
in terms of the surface tension n. Mathematicians would typically express this equation
in a somewhat more compact notation through the Laplace differential operator A =

2_ 9 , 2 —
Ve=5+ P such that w vy +wy, = Aw.

pz = —nAw with n ... surface tension (5.2.12)

Recall that the negative second derivative of the transverse displacement w takes the
interpretation of the curvature x. Accordingly —w yx = kxx =1/ ryand —wy = K,y =
1/ ry are the radii of curvature of the membrane about the y- and x-axis, respectively.

1 1
pe= —n[war +Wyy ] =1 [Kex + Ky | =1 {r_+r_} (5.2.13)
x Ty
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For equal radii ry = ry, = r, equation (5.2.13) reduces to the classical membrane equa-
tion for spheres p, = —nAw = n[1/ry + 1/ry] = 2n /r similar to the one derived
for soap bubbles Ap = 2 / r in the motivation (5.1.11). Recall that v was introduced
as the surface tension, which is of the unit force per length. The stress resultant n, the
force per cross section length, obviously has the same unit and takes a similar interpre-
tation.

Surface strain

To this point, we have only looked into changes of geometry in each direction indepen-
dently. Sometimes it is interesting to know the response of a two-dimensional element,
say in terms of the membrane area A. What is the relation between the applied pres-
sure and the change of an area element of the shell mid-surface? Let us first define a
measure for this change in area. By increasing the pressure p,, or rather by blowing
up the soap bubble in section 5.1.3, a small square shell element of initial area A = L2
will increase its area to a = I2 = [1 + ¢]?L%. Accordingly, the dimensionless change is
defined as the ratio between the deformed and the initial area, AA = a/ A. Similar
to the one dimensional strain AL/L = [l — L]/L = & which is nothing but the length
change AL scaled by the original length L, we could thus introduce a two dimensional
area strain as the area change AA scaled by the original area A.
272 _ 72

A::”;A: [HE]L% BN SU- JUPY (5.2.14)
Here, we have made use of the assumption of small strains and therefore neglected
the quadratic term (9(82). In the case of equibiaxial tension with ny, = Ny = 1,
the in plane force equilibrium (5.2.7);, and similarly (5.2.7),, can obviously be further
simplified. With the help of ey = ¢, = e withe = [AA / A] / 2, equation (5.2.7); can
then be rewritten in the following form.

_ Eh (et ven ] = Eh 14 ]e = Eh AA
12t A R - 2[1-v] A

The proportionality factor of Young’s modulus E devided by [1 — v] scaled by the thick-
ness h is often referred to as area expansion modulus K4 = [Eh] /2[1 —v]. It relates
the membrane forces n and the area strain AA / A.

AA Eh
=Kq4— ith Kp=———
n A wit A 2[1—1/]

n (5.2.15)

1 ... area expansion modulus (5.2.16)

You can easily check that it has the dimensions of force per length similar to the stress
resultant n. Typical values of the area expansion modulus for lipid bilayers are in the
range of K4 = 0.1 — 1.0 N/m. The cell membrane of red blood cells, for example, has
an area expansion modulus of approximately K4 = 0.45 N/m. This value is incredibly
huge as compared to the other moduli which indicates that cell membranes can be
treated as nearly incompressible. The large resistance to area change can be attributed
to the changes in energy associated with exposing the hydrophobic core of the lipid
bilayer to water as the spacing between the individual molecules is increased.
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