
4 Mechanics of the cytoskeleton

4.4 Tensegrity model for the cytoskeleton

Why is the cell membrane model of the previous section not sufficient to charcterize
cells like fibroblasts? What is the fundamental difference between a red blood cell and
a fibroblast? Fibroblasts not only consist of a cell membrane but also have a nucleus
and cytoskeletal filaments that are, as we have seen, relevant for locomotion and force
generation. How do cells move? How do cells attach to surfaces? How are forces
from outside the cell transmitted to the cell nucleus where they might influence gene
expression? One of the most elegant but maybe also most controversial models in cell
mechanics can help to explain these phenomena: the tensegrity model.

Tensegrity The term tensegrity was first coined by Buckminster Fuller to describe a
structure in which continuous tension in its members forms the basis for structural in-
tegrity. Fuller most famously demonstrated the concept of tensegrity in architecture
through the design of geodesic domes while his student, the artist Kenneth Snelson,
applied the concept of tensegrity to creating sculptures that appear to defy gravity.
Snelson’s tensegrity sculptures are minimal in components and achieve their stability
through dynamic distribution of tension and compression forces amongst their mem-
bers to create internal balance. It was upon viewing Snelson’s art that Donald Ingber
became inspired by the sculpture’s structural efficiency and dynamic force balance to
adopt tensegrity as a paradigm upon which to analyze cell structure and mechanics.
It has been 30 years since the premier appearance of the cellular tensegrity model. Al-
though the model is still largely under discussion, empirical evidence suggests that the
model may explain a wide variety of phenomena ranging from tumor growth to cell
motility.

Tensegrity is an artificial term made up of the words tension and integrity. Tensegrity
structures are well known in structural design for using a very special design con-
cept: They are made of compressive trusses, in our case microtubules, tied together
by tensile ropes, in our case actin and intermediate filaments. To better understand
the interplay of these cytoskeletal filaments, we will ask ourselves the simple question:
What is the effective Young’s modulus of a cell under uniaxial tension? To explore this
further, we consider one of the simplest tensegrity structures consisting of six micro-
tubule trusses of equivalent length L0, arranged in three pairs of two with an original
truss distance s0, and of 24 tensile actin and intermediate filament ropes of length l0,
as illustrated in figure 4.12. We will assume that the compressive trusses are perfectly
rigid while the tensile ropes act as Gaussian chains or linear entropic springs [11]. Us-
ing simple
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Figure 4.12: Kinematics of simple tensegrity cell model consisting of six compressive trusses (grey), in
our analytical model assumed to be rigid, and 24 tensile ropes (black). In the original state, all trusses
are of the same length L0, the rope lengths are l0 =

√
3/8 L0, and the distances between two parallel

trusses are s0 = 1/2 L0.

we can determine the length of all ropes l0 with the help of Pythagoras. We can then
draw a free body diagram for the truss A-A as illustrated in figure 4.12, right. Summing
up all forces acting on this truss along the direction of uniaxial tension will give us the
condition of
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= 0, (4.4.2)

where [L0 − s0]/[2 l0] and [s0]/[2 l0] project the tensile rope forces FAB and FAC onto
the direction of uniaxial tension in which we apply the force T. Since the ropes act as
linear entropic springs, we can express their forces through the simple

◦ constitutive equation F = k [ l − lr ], (4.4.3)

where k is the spring constant, l is the current rope length, and lr is the relaxed rope
length assuming there would be no prestress in the ropes. For the special case with no
externally applied tension T = 0, we obtain s0 = L0 / 2 from the equilibrium equation
(4.4.2) and l0 =

√
3 / 8L0 from the kinematic equation (4.4.1). With all these prelim-

inary considerations, we can again utilize the Hill condition similar to the previous
section,

Wmac .= Wmic or
∂W
∂sx
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(4.4.4)

however now evaluated in a somewhat tricky way by taking its partial derivative with
respect to the deformed parallel truss distance sx. The macroscopic energy can be
expressed as always and evaluated with the help of the chain rule.
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Similar to the previous section, we can relate the macroscopic kinematics, i.e., the
macroscopic strain ε in the direction of uniaxial tension, to the microscopic kinematics,
i.e., the change in length [sx − s0] scaled by the original length s0.

ε =
sx − s0

s0
such that

∂ε

∂sx
=

1
s0

(4.4.6)

Now, we can look at the discrete microscopic free energy density, which is nothing but
the tensile force T acting along the changing length

∫ sx
s0

dx scaled by the original solid
volume of the tensegrity cell V0.
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(4.4.7)

From the Hill condition (4.4.4), we obtain an expression for the macroscopic Young’s
modulus E in terms of the truss distance s0, the tensile force T, the macroscopic strain
ε, and the cell volume V0.
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(4.4.8)

We can further simplify this expression by plugging in the discrete values for the orig-
inal cell volume V0 = 5 L0/16, the distance of the parallel trusses s0 = l0 / 2, and the
original rope length l0 =

√
3/8 L0. We then obtain an expression for Young’s modulus

of the cell under uniaxial tension which we can further simplify for the case of small
strains,
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(4.4.9)

where ε0 = l0/lr − 1 is prestrain in the ropes under resting conditions and F0 =
k [l0 − lr] is the corresponding prestress of the ropes. We see that Young’s modulus
scales linearly with the prestress in the ropes F0, and is inversely proportional to the
initial rope length l2

0 .

Prestress Tensegrity models are an extremely elegant way to model prestress through
the application of initial tension in the rope members. In fact, prestress is inherent to
tensegrity structures in that tensegrity structures stabilize themselves through their
own weight balanced by prestress. Prestress, very common to biological structures, is
a design concept that we have adopted from nature, for example in the form of pre-
stressed reinforced concrete bridges. We might ask ourselves: What is the order of
magnitude of the prestress P in the cell? Even in the unloaded resting state, biolog-
ical tissues and cells might be subjected to prestress in vivo. Let us assume that for
our tensegrity model structure, the prestress generated by the ropes is approximately
equal in all three spatial directions.

P ≈ 1
3 νactin σactin (4.4.10)
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Herein, νactin represents the volume fraction of actin filaments,
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(4.4.11)

and σactin is the stress acting on one actin filament with a typical cross section Aactin.

σactin =
F0

Aactin (4.4.12)

The prestress can thus be approximated by
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What does that mean? According to the tensegrity model, the prestress P in a cell
scales linearly with Young’s modulus E. That is somewhat unexpected. Does it make
sense? Let’s look at cell experiments to validate this finding: measurements on human
airway smooth muscle cells by Wang et al. [2001] who measured the relation between
prestress P and shear modulus G, which, for the case of incompressibility, can be cor-
related to Young’s modulus through E = 3 G. The diagram in figure 4.13 demonstrates

Figure 4.13: Plot of shear modulus as a function of prestress demonstrating a linear relationship, as
predicted by a theoretical tensegrity model, adopted from [?]. The originally measured shear modulus G
scales linearly with Young’s modulus E = 3 G in the case of incompressiblity.

that the prestress P varies linearly with Young’s modulus E. The E over P slope, how-
ever, is ≈ 0.4 rather than 1 as predicted by the tensegrity model. The large scatter in
E values for different measuring techniques raises the question: What is the effective
Young’s modulus E of a cell? The cell is alive, and it is difficult to probe a cell without
changing its Young’s modulus.

And the take home message is... In their in vivo state, cells are subjected to prestress.
This prestress is the net result of forces generated by active contractile forces in the
actinomyosin apparatus balanced by forces from adhesion to surfaces. The tensegrity
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model is a paradigm to characterize the equilibrium between these forces and pre-
stress, however, it is only valid for particular loading scenarios. To incorporate a more
complex filament arrangement, the nonlinear nature of the individual filaments, large
deformations, and a discretely represented nucleus could be incorporated through the
tensegrity concept. The cell model would then have to be solved for numerically, e.g.,
with the help of the finite element method.
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