
4 Mechanics of the cytoskeleton

4.3 Network model for red blood cells

We have discussed that the cell is surrounded by a lipid bilayer which forms the cel-
lular membrane. You have also seen that this lipid bilayer might be very soft. To
structurally support the cell membrane, many cells have adopted an extremely elegant
design concept by lining the intracellular side of the plasma membrane through an in-
ternal scaffold.

outer membrane surface
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Figure 4.6: Microstructural architecture of the cell membrane of a red blood cell. A six-fold connected
network of spectrin tetramers which are crosslinked through short actin filaments, anchored to the phos-
pholipid bilayer, provides structural support to the inner cell membrane.

Erythrocytes, red blood cells, are maybe the most fascinating cells in the human body.
They deliver oxygen to the body via the blood flow through the circulatory system.
Erythrocytes take up oxygen in the lungs and release it while squeezing through the
body’s capillaries. Adult humans have about 2.5·1013, 25 trillion, red blood cells; those
form about a quarter of the total amount of cells in the human body. Adult human red
blood cells are flexible biconcave disks without a nucleus. A typical human erythro-
cyte has a disk diameter of 6 - 8µm, a thickness of 2µm, a volume of 90fL, and a surface
of 136µm2. It can swell to spherical shape of 150fL, without membrane distension.
The membrane of red blood cells plays a key role in regulating surface deformabil-
ity, flexibility, and adhesion to other cells. These functions are highly regulated by its
composition. The membrane of red blood cells is composed of three layers: (i) the
exterior glycocalyx, which is rich in carbohydrates; (ii) the lipid bilayer with its trans-
membrane proteins; and (iii) the internal membrane skeleton, a structural network of
spectrin tetramers composed of roughly 33,000 hexagons giving it an appearance of a
microscopic geodesic dome.

Figure 4.6 illustrates a cell membrane which is internally supported by a six-fold con-
nected network of polymeric chains. From a mechanical point of view, this internal
scaffold which plays a crucial role in maintenance of plasma membrane integrity and
cytoskeletal structure. A typical protein to form this supporting network structure is
spectrin. At either end, spectrin tetramers are associated with short filaments of actin
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4 Mechanics of the cytoskeleton

which act as junctional complexes allowing the formation of the hexagonal mesh. The
most prominent examples of cells with spectrin supported plasma membranes are ery-
throcytes, red blood cells. During their journey through the cardiovascular system,
red blood cells have to squeeze through tiny thin capillaries which are much smaller
in diameter than the cells themselves. How is that possible? Can their spectrin net-
work help to explain their tremendous flexibility? Why are these networks so regular?
Why are most biological networks six-fold or five-fold connected rather than four-fold
connected? Can we explain these phenomena from a mechanical point of view?

Homogenization

In this section, we try to better understand the structural importance of spectrin net-
works. Our first goal is to express the of overall macroscopic network properties of
the spectrin lattice in terms of known microscopic material parameters, in this case,
the stiffness of spectrin filaments. In theoretical and computational mechanics, this
approach is extremely common; it is referred to as homogenization. The underlying
theory is based on the Hill condition

Wmac .= Wmic (4.3.1)

which states that upon deformation, the energy Wmac stored in the macroscopic con-
tinuum should be equivalent to the energy Wmic stored in the microstructural net-
work. The macroscopic energy Wmac of a network-equivalent two-dimensional contin-
uous sheet can be expressed in terms two contributions, one related to bulk extension,
weighted by the bulk modulus κ, one related to shear, weighted by the shear modu-
lus µ.

Wmac = 1
2 κ [ εxx + εyy ]2 + 1

2 µ [ εxx − εyy ]2 + 2 µ ε2
xy (4.3.2)

In this equation, εxx and εyy are the normal strains in the x and y directions, respec-
tively, and εxy are the shear strains, which we have introduced in the kinematics sec-
tion 2.2.2. Now, the general idea is to compare this continuous macroscopic energy to
the discrete microscopic network energy to express the overall bulk and shear moduli
κ and µ in terms of the spectrin stiffness k. Spectrin polymers typically have an end-
to-end length of r = 75 nm, a contour length of L = 200 nm, an approximate segment

unstretched spring

stretched spring

k ... spring stiffness

k
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l = l0 + δ

Figure 4.7: Spectrin can be modeled as Gaussian chain which we can conceptually replace by an equiv-
alent linear entropic spring with a spring stiffness of k = 3 k T N / L. The strain energy of this spring can
then be expressed as Wspr = 1

2 k δ2.
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length of l = 7.5nm. These numbers tell us that l << L and r << L, or, more specifically,
that we can model spectrin as a Gaussian chain. We have seen that Gaussian chains are
linear and that we can conceptually replace them by equivalent linear entropic springs
with a spring stiffness of k = 3 k T N / L, where k is the Boltzmann constant, T is the
absolute temperature, N is the number of bonds, and L is the contour length. This
really simplifies our model, because the network of entropic polymers can now simply
be replaced by a network of linear springs. The free energy Wspr of a single spring then
takes the following simple representation,

Wspr = 1
2 k δ2 = 1

2 k [ l − l0 ]2 where δ = l − l0 (4.3.3)

where δ denotes the change in filament length, i.e., the difference between the current
length l and the original length l0, see figure 4.7. To evaluate equation , we need to
characterize the microscopic network energy density Wmic, i.e., the energy per repre-
sentative network area. This means we need to relate the energy of a single spring to
the area for which it is representative. In the next two subsections, we demonstrate

six-fold connected network four-fold connected network

Figure 4.8: Microstructural architecture of a six-fold and four-fold connected network. The theory of
homogenization helps to explain why nature prefers a six-fold connected network geometry.

this procedure for six-fold and for four-fold connected network as illustrated in figure
4.8, and characterize both network geometries in terms of their homogenized material
properties. Because it makes life much easier, we will look at network extension and
network shear individually. The conceptual separation of extension and shear is, by the
way, a very common approach in material science, theoretical, and applied mechanics.

4.3.1 Six-fold connected network

Extension. Let’s first consider the case of extension, and relate the first term of the
macroscopic free energy in equation (4.3.2) to the corresponding microscopic free en-
ergy term. To do so, we look at the smallest representative unit of the hexagonal net-
work, the so-called representative volume element or RVE, which consists of a single
triangle. If we extend this representative triangle isotropically, see figure 4.9, left, the
required network energy density

Wmic =
∑3

i=1 Wspr
i

∑3
i=1 Aspr

i
(4.3.4)

45



4 Mechanics of the cytoskeleton

extension shear

l0
l = l0 + δ

h0 = 1
2

√
3 l0

l0

h0 = 1
2

√
3 l0

δ

Figure 4.9: Kinematics of extension and shear for six-fold connected network.

is equal to the energy required to stretch all three individual chains

∑3
i=1Wspr

i = 3 Wspr = 3 [ 1
2 k δ2] (4.3.5)

divided by the area 3 Aspr covered by these three chains which is illustrated in figure
4.10, left.

∑3
i=1Aspr

i = 3 Aspr = 2 Atriangle = 2 [ 1
2 l0 h0 ] = 2 [ 1

2 l0 [ 1
2

√
3 l0 ] ] = 1

2

√
3 l2

0 (4.3.6)

This means, that the microscopic free energy density (4.3.4) takes the following form.

Wmic =
3 1

2 k δ2

1
2

√
3 l2

0

=
√

3 k
[

δ

l0

]2

(4.3.7)

For the six-fold connected network, the micro-to-macro relation for the extension term
then follows from equation (4.3) by using the micro-to-macro kinematics

εxx = δ / l0 εyy = δ / l0 εxy = 0 (4.3.8)

such that

Wmac .= Wmic thus
1
2

κ

[
δ

l0
+

δ

l0

]2

=
√

3 k
[

δ

l0

]2

→ κ = 1
2

√
3 k. (4.3.9)

This relation tells us that the macroscopic bulk modulus κ, i.e., the overall network
resistance to extension, scales linearly with the microscopic spring stiffness k, and that
the corresponding scaling factor is

√
3 / 2.

Shear. Now, we can repeat this homogenization procedure for the shear term. Unfor-
tunately, this is a bit more tricky. Again, we start by using the definition of the micro-
scopic free energy (4.3.4). To characterize the stretches of the three individual springs,
we can again consider a representative triangle, however, this time, to induce shear,
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we just shear its upper node, see figure 4.9, right. At the same time, both lower nodes
remain fixed. Given this deformation, how much do the individual springs contribute?
Figure 4.10, right, illustrates the new spring length l =

√
[h0]2 + [l0/2 + δ]2 = l0 + δ/2

which can then be inserted in the spring energy calculation.

∑3
I=1Wspr

i = 1
2 k [ + 1

2 δ ]2︸ ︷︷ ︸
left spring

+ 1
2 k [−1

2 δ ]2︸ ︷︷ ︸
right spring

+ 0︸︷︷︸
lower spring

= 1
4 k δ2 (4.3.10)

Using the same representative area as in equation (4.3.6)

∑3
i=1Aspr

i = 3 Aspr = 2 Atriangle = 2 [ 1
2 l0 h0 ] = 2 [ 1

2 l0 [ 1
2

√
3 l0 ] ] = 1

2

√
3 l2

0 (4.3.11)

we obtain the following shear term for the microscopic network energy density.

Wmic =
1
4 k δ2

1
2

√
3 l2

0

=
√

3
6

k
[

δ

l0

]2

(4.3.12)

For the six-fold connected network, the micro-to-macro relation for the shear term fol-
lows from equation (4.3) by using the micro-to-macro kinematics

εxx = 0 εyy = 0 εxy =
1
2
[
ux,y + uy,x

]
=

1
2

[
δ

1
2

√
3 l0

+ 0

]
=

1√
3

δ

l0
(4.3.13)

such that

Wmac .= Wmic thus 2 µ

[
1√
3

δ

l0

]2

=
√

3
6

k
[

δ

l0

]2

→ µ = 1
4

√
3 k. (4.3.14)

This implies that the macroscopic shear modulus µ, i.e., the resistance to shear, scales
linearly with the microscopic spring stiffness k whereby the corresponding scaling fac-
tor is 1

4

√
3. To gain a better feeling for these values, we will now look at a four-fold

connected network.
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Figure 4.10: Illustration of representative area of three chains 3 Aspring =
√

3/2 l2
0 in six-fold connected

network model, left. Illustatration of deformed spring length l = l0 + δ/2 in six-fold connected network
model subjected to shear, right.
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4.3.2 Four-fold connected network

Extension. We follow the same approach as before and investigate the smallest repre-
sentative unit of the network, the representative volume element or RVE, which con-
sists of a single square as illustrated in figure 4.11, left. If we extend this square network
isotropically, the required network energy density

Wmic =
∑4

i=1 Wspr
i

∑4
i=1 Aspr

i

(4.3.15)

is equal to the energy required to stretch all four individual chains

∑4
i=1Wspr

i = 4 Wspr = 4 [ 1
2 k δ2] = 2 k δ2 (4.3.16)

divided by the representative square area 4 Aspr.

∑4
i=1Aspr

i = 4 Aspr = 2 Asquare = 2 l2
0 (4.3.17)

With the help of these considerations, we can reformulate the microscopic free energy
density (4.3.15) in the following form.

Wmic =
2 k δ2

2 l2
0

= k
[

δ

l0

]2

(4.3.18)

The micro-to-macro relation for the extension term of the four-fold connected network
again follows from equation (4.3) by using the micro-to-macro kinematics

εxx = δ / l0 εyy = δ / l0 εxy = 0 (4.3.19)

such that

Wmac .= Wmic thus
1
2

κ

[
δ

l0
+

δ

l0

]2

= k
[

δ

l0

]2

→ κ = 1
2 k (4.3.20)

For the four-fold connected network, the macroscopic bulk modulus κ turns out to be
half the microscopic spring stiffness k.
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Figure 4.11: Kinematics of extension and shear for four-fold connected network.
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Shear. Now, let’s look at the shear term using the definition of the microscopic free
energy (4.3.15). To characterize the stretches in the four individual springs, we consider
the representative square as RVE, on which we induce shear by moving its upper two
nodes while both lower nodes remain fixed as illustrated in figure 4.11, right. How
much does the energy stored in the individual springs contribute to the stored energy
of the network?

∑4
i=1Wspr

i = 2 · 1
2 k δ2︸ ︷︷ ︸

vertical springs

+ 1
22 · 0︸ ︷︷ ︸

horizontal springs

= k δ2 = 0 (4.3.21)

Surprisingly, this energy term seems to be zero! Why does the shear contribution to the
microscopic network energy vanish? In the small strain limit, the new spring length l
is equal to the original length l0

l =
√

l2
0 + δ2 ≈ l0 such that δ = 0. (4.3.22)

This implies that

Wmac .= Wmic where Wmic = 0 → µ = 0 (4.3.23)

i.e., the four-fold connected network cannot store energy upon shearing. Regard-
less of the spring stiffness k, when subjected to shear, the microstructural network just
collapses. You can easily try this by building a four-fold connected network yourself
and trying to shear it. There is virtually no resistance! Unlike the six-fold connected
network, the four-fold connected network does not recover its original shape when
subjected to shear. It is uncapable to store mechanical energy!

What does this tell us about red blood cells? Why is their membrane supported by a
six-fold connected network? A six-fold connected network can easily store and release
energy. This mechanical feature is absolutely essential for red blood cells as they are
being squeezed and released from small capillaries. By structurally supporting the cell
membrane through a six-fold connected network, nature has fund an extremely ele-
gant and energetically favorable way to equip these cells with an outer layer that can
be extremely resistant to tension, while at the same time being extremely flexible in
shear.
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