FORCE WEEK
WHAT'S STATICS? (CHAPTER 1.1 - 1.5)

1.1 MECHANICS
- SOLID MECHANICS
- FLUID MECHANICS
- DEFORMABLE BODIES → ME80
- RIGID BODIES
- DYNAMICS → ENGR15
- STATICS → ENGR14

1.2 CONCEPTS
- LENGTH
- TIME
- MASS
- FORCE

METRIC / SI UNITS
- METER m
- SECOND s
- (Kilo) Gram (kg)
- Newton N

IDEALIZATIONS
- "PARTICLE"... HAS MASS BUT NO SIZE
- "RIGID BODY"... GROUP OF PARTICLES WITH A FIXED DISTANCE
- "CONCENTRATED FORCE"... REPRESENTATION OF LOADING (OVER A SMALL AREA) AS A SINGLE FORCE

NEWTON'S THREE LAWS OF MOTION

1. A PARTICLE moving at a constant velocity (SPECIAL CASE: REST WITH NO VELOCITY), \(v = \text{const} \), REMAINS IN THIS STATE UNLESS \(F \neq 0 \)
A particle of mass \(m \) subject to a force \(\vec{F} \) experiences an acceleration along the line of \(\vec{F} \) such that

\[\text{"Accelerated motion"} \quad \frac{\vec{F}}{m} = \vec{a} \]

\[\vec{a} = \frac{\vec{F}}{m} \]

Mutual forces of action and reaction are equal, opposite, and collinear

\[\text{"Action = Reaction"} \quad \vec{F}_{AB} = -\vec{F}_{BA} \]

Weight ("conversion of mass into force")

\[W = m \cdot g \]

\[w = \text{weight} \]

\[m = \text{mass} \]

\[g = 9.81 \text{ m/s}^2 \]

\[g \] acceleration due to gravity

The body of a mass of \(m = 1 \text{ kg} \) has a weight of \(W = 1 \text{ kg} \cdot 9.81 \text{ m/s}^2 = 9.81 \text{ N} \)

1.3/1.4 SI system of units

<table>
<thead>
<tr>
<th>CONVERSION</th>
<th>FPS</th>
<th>SI</th>
</tr>
</thead>
<tbody>
<tr>
<td>FORCE</td>
<td>lbf</td>
<td>1.448N</td>
</tr>
<tr>
<td>MASS</td>
<td>slug</td>
<td>14.59 kg</td>
</tr>
<tr>
<td>LENGTH</td>
<td>ft</td>
<td>0.305 m</td>
</tr>
</tbody>
</table>