why do things break? to reliably predict what’s going on inside a structure, we need to know the forces that act on it. it’s newton’s law that helps us to determine these forces. basically, this course is all about newton’s law, force equilibrium, and its application to civil, mechanical, aerospace, and biological problems. we explore it for particles first, then for two-dimensional, and finally for three-dimensional systems. first we look at the structure from the outside, then from the inside. we learn how to identify, formulate, and solve engineering problems. to do so, you should be familiar with and not afraid of maths, vectors, and basic physics.

ellen kuhl, charbel eid, julianne gould, estevan mendoza, chris ploch
... but our real bible is ...

LAW I.
Every body perseveres in its state of rest, or of uniform motion in a right line, unless it is compelled to change that state by forces impressed thereon.

LAW II.
The alteration of motion is ever proportional to the motive force impressed; and is made in the direction of the right line in which that force is impressed.

LAW III.
To every Action there is always opposed an equal Reaction: or the mutual actions of two bodies upon each other are always equal, and directed to contrary parts.

philosophiae naturalis principia mathematica. isaac newton. [1687]
homework. homework sets will be announced in class and assigned via coursework. homework will be graded for completeness, correctness, and clarity. assignments must be completed in pencil on engineering computation paper. solutions must be legible and orderly, with complete and properly labeled free body diagrams. answers must be clearly boxed. the meaning of variables that you introduce must be clear. if the grader cannot read and follow your work, you will not get credit. you have up to three late days to use over the quarter. a late day is charged for any fraction of a day past the due date. once you have used your allocation of late days, further late submissions will be corrected, but will receive a score of zero. the final homework may not be submitted late.

exams. your highest exam score will count for 30% of your final grade and your other two exams will count for 25% each. the first midterm and the final are closed book/closed notes exams. you may bring one handwritten, letter sized formula sheet to each exam but no photocopies or printouts. bring a calculator, but pre-programmed functions or programs may not be used. the second midterm is a take home exam. no internal or external communication is permitted during the exam. all exams must be taken at the scheduled time.
when a structure fails, there is invariably an investigation to find out why it failed. apart from the legal and professional necessity to determine the cause of failure, there is also the need to learn from it lessons that would enable subsequent designers and builders to avoid the pitfalls of the failed structure and develop safer alternatives.

technological developments in recent decades have introduced new configurations, materials, and methods of design and construction that raise new and complex problems. failures are caused by many unprecedented causes singly or in combination. paradoxically, in the pursuit of innovation, even basic principles of sound structural design and good construction practice are often violated, leading to failure.

motivation

reasons for structural failure

- structural analysis 34%
- conceptual errors 34%
- drawings and specifications 19%
- work planning and preparation 9%
- combinations 4%

- ignorance, carelessness, negligence 35%
- insufficient knowledge 25%
- underestimation of influences 13%
- forgetfulness, errors, mistakes 9%
- reliance upon others without sufficient control 6%
- objectively unknown situation 4%
- others 8%

motivation

reasons for structural failure

sudden failure, subtotal 66%
- loss of equilibrium 13%
- failure with collapse 29%
- failure without collapse 11%
- other types of failure 10%

unacceptable conditions, subtotal 33%
- excessive cracks 16%
- errors in dimensions and support conditions 8%
- deflections and change of shape 7%
- other unacceptable conditions 6%

hyatt regency walkway collapse

the hyatt regency hotel walkway collapse occurred on july 17, 1981, in kansas city, missouri, killing 114 people and injuring 216 others. at the time, it was the deadliest structural collapse of u.s. history. one of the defining features of the hotel was its lobby, which featured a multistory atrium spanned by steel, glass and concrete walkways on the second, third and fourth levels suspended from the ceiling. the walkways were 37m long and weighed 29,000 kg. the fourth level walkway aligned directly above the second level walkway.
Construction difficulties resulted in a subtle but flawed design change that doubled the load on the connection between the walkway support beams and the tie rods carrying the weight of the second and fourth floor walkways. This excessive load caused a lower bolt to pull through the beam so that the upper walkway collapsed upon the one below.

The engineers who had approved the final drawings were convicted by the Missouri board of architects, professional engineers, and land surveyors of gross negligence, misconduct, and unprofessional conduct in the practice of engineering; they all lost their engineering licenses in the state of Missouri and Texas. While the design company was discharged of criminal negligence, it lost its license to be an engineering firm. At least $140 million was awarded to victims and their families in civil lawsuits.

The Hyatt Regency Tragedy remains a classic model for the study of engineering ethics and errors. "Investigation of the Kansas City Hyatt Regency Walkway Collapse" US Department of Commerce [1982]

1.1 Mechanics

- Mechanics: ME333
- Solid Mechanics: ME338
- Fluid Mechanics: ME361
- Rigid Bodies: ME80
- Dynamics: E15
- Statics: E14
basic quantities

- **length.** meter [m]
- **time.** second [s]
- **mass.** gram [g]
- **force.** newton [N]

idealizations

- **particle.** a particle has a finite mass but a size that can be neglected. For example, the size of the earth is insignificant compared to the size of the orbit; therefore the earth can be modeled as a particle when studying planet motion.

- **rigid body.** a rigid body is a combination of a large number of particles with all particles remaining at a fixed distance from one another.

- **concentrated force.** a concentrated force is a representation of loading as a single point force. This is justified if the load is applied to an area which is small compared to the overall size of the body.

1.2 fundamental concepts

newton’s three laws of motion

- **first law**

 equilibrium

 If $\mathbf{F} = \mathbf{0}$ then $\mathbf{v} = \text{const.}$

- **second law**

 accelerated motion

 $\mathbf{F} = m \cdot \mathbf{a}$

- **third law**

 actio = reactio

 $\mathbf{F}_{AB} = - \mathbf{F}_{BA}$

weight

- **SI system**

 $W = m \cdot g$

 W ... weight (derived quantity)

 m ... mass (basic quantity)

 g ... acceleration due to gravity

 $g = 9.81 \, \text{m/s}^2$

- **FPS system**

 $m = \frac{W}{g}$

 m ... mass (derived quantity)

 W ... weight (basic quantity)

 g ... acceleration due to gravity

 $g = 32.2 \, \text{ft/s}^2$
1.3 Units of Measurement

Conversion of Units

<table>
<thead>
<tr>
<th>TABLE 1.2 Conversion Factors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quantity</td>
</tr>
<tr>
<td>Force</td>
</tr>
<tr>
<td>Mass</td>
</tr>
<tr>
<td>Length</td>
</tr>
</tbody>
</table>

Prefixes

<table>
<thead>
<tr>
<th>TABLE 1.3 Prefixes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multiple</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Submultiple</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Derived unit.

1.4 International System of Units

SI System
- Basic units: meters [m], seconds [s], kilogram [kg]
- Derived unit: Newton [N = kg · m/s²]

FPS System
- Basic units: feet [ft], seconds [s], pounds [lb]
- Derived unit: slug [slug = lb · s²/ft]