2D EQUILIBRIUM WEEK

WHAT'S FORCE & MOMENT EQUILIBRIUM IN 2D?

5.3 EQUATIONS OF EQUILIBRIUM (CHAPTER 5.3-5.4)

- Equilibrium in 2D
 \[\sum F_x = 0 \quad \sum F_y = 0 \quad \sum M_z = 0 \]

- Alternative set of equations
 \[\sum F_x = 0 \quad \sum M_A = 0 \quad \sum M_B = 0 \]
 such that \(\vec{r}_{AB} \times \vec{x} \) (A & B may not be perp to x)

- Or, alternatively
 \[\sum M_A = 0 \quad \sum M_B = 0 \quad \sum M_C = 0 \]
 such that \(A, B, C \) do not lie on the same line

Remarks: Use one of the eqns you have not used before as a control!

\[\sum M_0 = 0 \] first, select point \& such that two lines of action pass through it is direct solution & one face.

You may orient the x-y-system along your members!

If the source to a force is negative,
this implies that it acts opposite to the direction you have assumed!
Example 5.5

I. Information

II. Free Body Diagram (everybody, try themselves)

III. Solution

Which equation do we start with? Why?

\[\sum M_A = 0 \]

\[+B \cdot 0.75m - N \cdot 1.0m - M = 0 \]

\[\rightarrow B = \frac{N \cdot 1.0m + M}{0.75m} \]

\[= \frac{60 \text{ Nm} + 90 \text{ Nm}}{0.75m} = 200 \text{ N} \]

\[\sum F_x = 0 \]

\[A_x - B \cdot \sin 30^\circ = 0 \]

\[\rightarrow A_x = B \cdot \sin 30^\circ = 200 \text{ N} \cdot 0.5 = 100 \text{ N} \]

\[\sum F_y = 0 \]

\[A_y - N - B \cdot \cos 30^\circ = 0 \]

\[\rightarrow A_y = N + B \cdot \cos 30^\circ \]

\[= 60 \text{ N} + 200 \text{ N} \cdot \frac{1}{2} \cdot \sqrt{3} = 233 \text{ N} \]

\[\sum M_B = 0 \]

\[-M - N[1.0m \cdot 0.75m \cdot \cos 30^\circ] + A_x \cdot 0.75m \cdot \sin 30^\circ + A_y \cdot 0.75m \cdot \cos 30^\circ \]

\[\text{in project} = 0 \text{ Nm} \]
graphic control using vector addition

\[
\begin{align*}
Ax + Ay + B + N &= 0 \\
\text{establish a length scale!}
\end{align*}
\]

5.4 TWO- & THREE-FORCE MEMBERS

TWO FORCE MEMBERS
- pin-connected at both ends
- weightless
- no extra forces acting on it

\[
\begin{align*}
\Sigma F_x &= 0 & \Sigma F_y &= 0 \\
F_A &= F_B & F_A & F_B \text{ are equal & opposite} \\
\Sigma M &= 0 \\
F_A & F_B \text{ lie on the same line of action (\& do not produce a couple moment)}
\end{align*}
\]

Identifying two-force members is essential or you will not have enough equations to solve for the unknowns!

EXAMPLE 5.13!
THREE FORCE MEMBER

- Concurrent force system
- Parallel force system

\[\Sigma M = 0 \]

requires that the three forces form a concurrent (meeting in \(\Theta \)) or parallel force system.

Special case of parallel force system: lines of action intersect at "infinity".

Example 5.13

I. Image projected
II. Free body diagram

Graphic solution

- \(C = 400 \text{ N} \)
- \(B \approx 1300 \text{ N} \)
- \(A \approx 1000 \text{ N} \)

Kinematics:

\[\theta = ? \quad \tan \theta = \frac{0.5 \text{ m} + 0.2 \text{ m}}{0.4 \text{ m}} \quad \Rightarrow \theta = 60.3^\circ \]

This replaces \(\Sigma M = 0 \) equation, then use \(\Sigma F_x = 0 \) & \(\Sigma F_y = 0 \) to det. A & B.