Homework V - Chapters 7 and 8

due Friday, 05/27/11, 12:50pm, 370-370

For late homework, you are responsible to arrange drop off with our grader Kaushik Mani, kmani@stanford.edu. Once you have used up your three late days, you will no longer receive points for your homework. Here are our office hours and emails.

<table>
<thead>
<tr>
<th>when</th>
<th>when</th>
<th>where</th>
<th>who</th>
<th>email</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tuesdays</td>
<td>06:00 - 07:30pm</td>
<td>Durand 247</td>
<td>Charbel</td>
<td>ceid@stanford.edu</td>
</tr>
<tr>
<td>Wednesdays</td>
<td>02:30 - 04:00pm</td>
<td>Durand 217</td>
<td>Ellen</td>
<td>ekuhl@stanford.edu</td>
</tr>
<tr>
<td>Wednesdays</td>
<td>05:00 - 06:30pm</td>
<td>Durand 393</td>
<td>Chris</td>
<td>cploch@stanford.edu</td>
</tr>
<tr>
<td>Thursdays</td>
<td>10:00 - 11:30am</td>
<td>Durand 203</td>
<td>Joules</td>
<td>jmgould@stanford.edu</td>
</tr>
<tr>
<td>Thursdays</td>
<td>01:00 - 02:30pm</td>
<td>Durand 393</td>
<td>Estevan</td>
<td>estevanm@stanford.edu</td>
</tr>
</tbody>
</table>

For this homework, you need to be familiar with chapters 7 and 8 of your book!
Remember, all solutions must include free body diagrams!

Problem 1

Draw the shear and moment diagrams for the beam.
Problem 2

Draw the shear and moment diagrams for the beam.

Problem 3

Draw the shear and moment diagrams for the overhang beam.

Problem 4

Draw the shear and moment diagrams for the beam.
Problem 5

The 180-lb man climbs up the ladder and stops after he senses that the ladder is on the verge of slipping. Determine the coefficient of friction between the friction pad at A and the ground if the inclination of the ladder is $\theta = 60^\circ$ and the wall at B is smooth. The center of gravity for the man is at G. Neglect the weight of the ladder.

Problem 6

If the center of gravity of the stacked tables is at G, and the stack weighs 100 lb, determine the smallest force P the boy must push on the stack in order to cause movement. The coefficient of static friction at A and B is $\mu_s = 0.3$. The tables are locked together.

Problem 7

Wear your E14 T-shirt and take a landscape format photo of yourself in a funny situation. The photo must contain either a shear and moment diagram situation (chapter 7) or a friction problem (chapter 8). Upload your photo through your coursework drop box. The five most creative photos will receive five extra bonus points.